scholarly journals Soil Organic Carbon and Nitrogen Stock and Vertical Distribution Pattern of Typical Forest in Lushan

2017 ◽  
Vol 05 (01) ◽  
pp. 1-8
Author(s):  
茜 张
CATENA ◽  
2017 ◽  
Vol 153 ◽  
pp. 89-99 ◽  
Author(s):  
Dessie Assefa ◽  
Boris Rewald ◽  
Hans Sandén ◽  
Christoph Rosinger ◽  
Abrham Abiyu ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Gandhiv Kafle

This paper reports the findings of a research conducted in Kankali community forest, Chitwan, Nepal, to quantify the vertical distribution of soil organic carbon (SOC) and nitrogen in 1 m soil profile depth. This community forest represents a tropical Shorea robusta-dominated community forest. It was found that the soil had 122.36 t/ha SOC and 12.74 t/ha nitrogen in 1 m soil profile in 2012, with 0.99% soil organic matter and 0.10% nitrogen concentration in average. Carbon and nitrogen ratio (C/N ratio) of the soil was found to be 9.90. Both bulk density and C/N ratio were found increasing with increase in soil depth. The SOC and nitrogen were found significantly different across different soil layers up to 1 m soil profile depth. The average pH of the forest soil was found to be 5.3. Looking into the values of stocks of SOC and nitrogen, it is concluded that Kankali community forest has played a role in global climate change mitigation by storing considerable amounts of SOC. Involvement of local community in management of tropical forest cannot be overlooked in the process of climate change mitigation.


Wetlands ◽  
2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Yu An ◽  
Yang Gao ◽  
Xiaohui Liu ◽  
Shouzheng Tong ◽  
Bo Liu ◽  
...  

Soil Research ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 632 ◽  
Author(s):  
Kathryn Conrad ◽  
Ram C. Dalal ◽  
Ryosuke Fujinuma ◽  
Neal W. Menzies

Stabilisation and protection of soil organic carbon (SOC) in macroaggregates and microaggregates represents an important mechanism for the sequestration of SOC. Legume-based grass pastures have the potential to contribute to aggregate formation and stabilisation, thereby leading to SOC sequestration. However, there is limited research on the C and N dynamics of soil organic matter (SOM) fractions in deep-rooted legume leucaena (Leucaena leucocephala)–grass pastures. We assessed the potential of leucaena to sequester carbon (C) and nitrogen (N) in soil aggregates by estimating the origin, quantity and distribution in the soil profile. We utilised a chronosequence (0–40 years) of seasonally grazed leucaena stands (3–6 m rows), which were sampled to a depth of 0.3 m at 0.1-m intervals. The soil was wet-sieved for different aggregate sizes (large macroaggregates, >2000 µm; small macroaggregates, 250–2000 µm; microaggregates, 53–250 µm; and <53 µm), including occluded particulate organic matter (oPOM) within macroaggregates (>250 µm), and then analysed for organic C, N and δ13C and δ15N. Leucaena promoted aggregation, which increased with the age of the leucaena stands, and in particular the formation of large macroaggregates compared with grass in the upper 0.2 m. Macroaggregates contained a greater SOC stock than microaggregates, principally as a function of the soil mass distribution. The oPOM-C and -N concentrations were highest in macroaggregates at all depths. The acid nonhydrolysable C and N distribution (recalcitrant SOM) provided no clear distinction in stabilisation of SOM between pastures. Leucaena- and possibly other legume-based grass pastures have potential to sequester SOC through stabilisation and protection of oPOM within macroaggregates in soil.


Sign in / Sign up

Export Citation Format

Share Document