Soil organic carbon and nitrogen sequestration and turnover in aggregates under subtropical leucaena–grass pastures

Soil Research ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 632 ◽  
Author(s):  
Kathryn Conrad ◽  
Ram C. Dalal ◽  
Ryosuke Fujinuma ◽  
Neal W. Menzies

Stabilisation and protection of soil organic carbon (SOC) in macroaggregates and microaggregates represents an important mechanism for the sequestration of SOC. Legume-based grass pastures have the potential to contribute to aggregate formation and stabilisation, thereby leading to SOC sequestration. However, there is limited research on the C and N dynamics of soil organic matter (SOM) fractions in deep-rooted legume leucaena (Leucaena leucocephala)–grass pastures. We assessed the potential of leucaena to sequester carbon (C) and nitrogen (N) in soil aggregates by estimating the origin, quantity and distribution in the soil profile. We utilised a chronosequence (0–40 years) of seasonally grazed leucaena stands (3–6 m rows), which were sampled to a depth of 0.3 m at 0.1-m intervals. The soil was wet-sieved for different aggregate sizes (large macroaggregates, >2000 µm; small macroaggregates, 250–2000 µm; microaggregates, 53–250 µm; and <53 µm), including occluded particulate organic matter (oPOM) within macroaggregates (>250 µm), and then analysed for organic C, N and δ13C and δ15N. Leucaena promoted aggregation, which increased with the age of the leucaena stands, and in particular the formation of large macroaggregates compared with grass in the upper 0.2 m. Macroaggregates contained a greater SOC stock than microaggregates, principally as a function of the soil mass distribution. The oPOM-C and -N concentrations were highest in macroaggregates at all depths. The acid nonhydrolysable C and N distribution (recalcitrant SOM) provided no clear distinction in stabilisation of SOM between pastures. Leucaena- and possibly other legume-based grass pastures have potential to sequester SOC through stabilisation and protection of oPOM within macroaggregates in soil.

Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 293 ◽  
Author(s):  
RC Dalal ◽  
RJ Mayer

Distribution of soil organic carbon in sand-, silt- and clay-size fractions during cultivation for periods ranging from 20 to 70 years was studied in six major soils used for cereal cropping in southern Queensland. Particle-size fractions were obtained by dispersion in water using cation exchange resin, sieving and sedimentation. In the soils' virgin state no single particle-size fraction was found to be consistently enriched as compared to the whole soil in organic C in all six soils, although the largest proportion (48%) of organic C was in the clay-size fraction; silt and sand-size fractions contained remaining organic C in equal amounts. Upon cultivation, the amounts of organic C declined from all particle-size fractions in most soils, although the loss rates differed considerably among different fractions and from the whole soil. The proportion of the sand-size fraction declined rapidly (from 26% to 12% overall), whereas that of the clay-size fraction increased from 48% to 61% overall. The proportion of silt-size organic C was least affected by cultivation in most soils. It was inferred, therefore, that the sand-size organic matter is rapidly lost from soil, through mineralization as well as disintegration into silt-size and clay-size fractions, and that the clay fraction provides protection for the soil organic matter against microbial and enzymic degradation.


2009 ◽  
Vol 66 (4) ◽  
pp. 467-475 ◽  
Author(s):  
Luciana Della Coletta ◽  
Gabriela Bielefeld Nardoto ◽  
Sabrina Ribeiro Latansio-Aidar ◽  
Humberto Ribeiro da Rocha

Carbon and nitrogen biogeochemical cycles in savannas are strongly regulated by the seasonal distribution of precipitation and pulses of nutrients released during the wetting of the dry soil and are critical to the dynamics of microorganisms and vegetation. The objective of this study was to investigate the spatial and temporal variability of C and N isotope ratios as indicators of the cycling of these elements in a cerrado sensu stricto area, within a protected area in a State Park in the state of São Paulo, Brazil. The foliar δ13C and δ15N values varied from -33.6 to -24.4 ‰ and -2.5 to 4.5 ‰, respectively. The δ13C values showed a consistent relationship with canopy height, revealing the importance of structure of the canopy over the C isotopic signature of the vegetation. Carbon isotopic variations associated with the length of the dry season indicated the importance of recent fixed C to the integrated isotopic signature of the leaf organic C. The studied Cerrado species showed a depleted foliar δ15N, but a wide range of foliar Nitrogen with no difference among canopy heights. However, seasonal variability was observed, with foliar δ15N values being higher in the transition period between dry and rainy seasons. The variation of the foliar C and N isotope ratios presented here was consistent with highly diverse vegetation with high energy available but low availability of water and N.


Soil Research ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 820 ◽  
Author(s):  
K. A. Conrad ◽  
R. C. Dalal ◽  
D. E. Allen ◽  
R. Fujinuma ◽  
Neal W. Menzies

Quantifying the size and turnover of physically uncomplexed soil organic matter (SOM) is crucial for the understanding of nutrient cycling and storage of soil organic carbon (SOC). However, the C and nitrogen (N) dynamics of SOM fractions in leucaena (Leucaena leucocephala)–grass pastures remains unclear. We assessed the potential of leucaena to sequester labile, free light fraction (fLF) C and N in soil by estimating the origin, quantity and vertical distribution of physically unprotected SOM. The soil from a chronosequence of seasonally grazed leucaena stands (0–40 years) was sampled to a depth of 0.2m and soil and fLF were analysed for organic C, N and δ13C and δ15N. On average, the fLF formed 20% of SOC and 14% of total N stocks in the upper 0.1m of soil from leucaena rows and showed a peak of fLF-C and fLF-N stocks in the 22-year-stand. The fLF δ13C and fLF δ15N values indicated that leucaena produced 37% of fLF-C and 28% of fLF-N in the upper 0.1m of soil from leucaena rows. Irrespective of pasture type or soil depth, the majority of fLF-C originated from the accompanying C4 pasture-grass species. This study suggests that fLF-C and fLF-N, the labile SOM, can form a significant portion of total SOM, especially in leucaena–grass pastures.


2020 ◽  
Author(s):  
Ahlem Tlili ◽  
Imene Dridi ◽  
Moncef Gueddari

&lt;p&gt;Soil organic matter has generated international interest in carbon and nitrogen sequestration. In reality, small fluctuations of soil organic stock could have large impacts on global warming. Therefore, quantification of Soil Organic Carbon (SOCs) and Total Nitrogen (TNs) stocks in surface and deep horizons are important to control the release of greenhouse gases. The present research was undertaken in order to determine SOCs and TNs evolution over 50 years. For this aim, we selected two soils (P1 and P2) developed under contrasted pedogenetic conditions in North-West of Tunisia (Beja governorate). P1 is a Luvisol located in a forest region. However, P2 is a Cambisol situated in an agriculture zone. Soil samples were gathered from surface (0-30 cm) and deep (50-100 cm) horizons in 1971, 2005, 2012 and 2019. SOCs declined in surface and deep horizons during the experimental period in both studied soils. In the case of Luvisol, the values declined from 91.01 t/ha to 75.54 t/ha and from 53.00 t/ha to 24.51 t/ha, respectively in surface horizons and deep horizons. Likewise, the SOCs values decreased from 84.24 t/ha to 25.52 t/ha in surface horizons and from 24.45 t/ha to 14.20 t/ha in deep horizons of the Cambisol. The TNs recorded lower values than SOCs. Nevertheless, they showed the same behavior. Our results showed that the highest values of SOCs and TNs were recorded in the Luvisol. This soil exhibited the greatest amount of organic matter since it was developed under forest vegetation. In addition, the results showed an enrichment in SOCs and TNs of super&amp;#239;&amp;#172;&amp;#129;cial horizons to the detriment of the deep horizons. Nevertheless, this decrease in organic stocks with depth occurred following different patterns according to soil type. In fact, the Cambisol reported an important depletion of soil organic stocks as compared to the Luvisol. The loss of SOCs and TNs were estimated to be 69.71% and 54.17% in surface horizon, and 41.94 % and 28.28 % in deep horizon, respectively. Indeed, the land-use change increases the decomposition of soil organic matter principal source of SOCs and TNs. Such a reduction has wider implications on global warming and soil fertility.&amp;#160;&amp;#160;&lt;/p&gt;


2018 ◽  
Vol 22 (03) ◽  
pp. 103-108
Author(s):  
Enkhtuya D ◽  
Tuul D ◽  
Munkhtsetseg T

Soil organic matter can be analyzed on the basis of the different fractions. Changes in the levels of organic matter, caused by land use, can be better understood by alterations in the different fractions. Therefore in order to discover tendency of soil fertility sustainability it is significant to research on stable and labile form fractions of soil organic carbon by advanced methodology and modern technique. Our research work aimedto evaluate the effect of mineral and organic fertilizers on the labile and stable organic carbon of the chestnut soil in Mongolia. The soils samples used in this study we collected from variants of mineral (N60P40K40), organic (biohumus 1t / hec.) Fertilizer and their combination of the Long-term fertilizers experiments of Plant and Agriculture Institute Changes in soil organic C by land use for agricultural purposes occurred mainly in the fraction of particulate organic matter (> 20 μm). The clay and silt fractions were quatified with a Mastersizer S after distruction organic substances and carbonates using H2O2 and HCI and the sand fraction was determined by wet sieving. According to our research, the stable form of organic carbon in chestnut soil is 39, 0-40,1% of the total fine particle size and 59, 9-61,0% of the active form fraction. On the other hand, variants with fertilizer tend to have increased stabile composition of soil organic carbon. It indicates that soil fertility protection and increased stability are possible in the country’s agricultural technology if use mineral and organic fertilizers.


1999 ◽  
Vol 79 (3) ◽  
pp. 427-429 ◽  
Author(s):  
D. Curtin ◽  
H. Steppuhn ◽  
C. A. Campbell ◽  
V. O. Biederbeck

This study was undertaken to characterize the response of organic matter mineralization to soluble electrolyte concentration. We added salts (either KCl or KH2PO4) to a non-saline Black Chernozem at rates of 0 to 64 mmol kg−1 and measured the amounts of C and N mineralized in a 40 d incubation (21 °C and field capacity). Precipitation of calcium phosphate in KH2PO4-treated soil resulted in electrical conductivity (EC), measured in a 1:2 soil:water extract, being lower than in KCl-treated soil. Dissolved organic C (DOC) was increased (up to twofold) by KH2PO4 addition but KCl had little effect. The relationship between C mineralization and EC appeared to be independent of salt type. Mineralization decreased sharply (by 50%) when EC increased from 0.5 dS m−1 (check value) to 1.3 dS m−1. Inhibition of nitrification was not detected until EC increased to about 2 dS m–1. Key words: Mineralization, organic matter, salinity, chloride, sulfate


2020 ◽  
Vol 9 (1) ◽  
pp. 202
Author(s):  
Lucas Dupont Giumbelli ◽  
Arcângelo Loss ◽  
Claudinei Kurtz ◽  
Álvaro Luiz Mafra ◽  
Marisa De Cássia Piccolo ◽  
...  

The conversion of conventional tillage system (CTS) into no-tillage system (NTS) for onion crops with use of soil cover crops increases carbon and nitrogen contents in the soil aggregates. The objective of this work was to evaluate the effects of combinations of different plant species and soil management systems using rotation with soil cover crops for onion crops on the light organic matter (LOM), carbon (C), and nitrogen (N) contents in the organic matter granulometric fractions in soil macroaggregates and bulk soil. A nine-year experiment (2007-2016) was conducted using the treatments (T): maize-onion in NTS (T1); soil cover crops (winter)-onion in NTS(T2); maize-winter grasses-onion in NTS (T3); velvet bean-onion in NTS (T4); millet-soil cover crops (winter)-onion in NTS (T5); velvet bean-rye-onion in NTS (T6); maize-onion in CTS (T7); intercropped soil cover crops (summer)-onion in NTS (T8). C and N contents in the LOM, particulate organic C and N (POC and PON), and mineral- associated C and N (MOC and MON) were evaluated in soil macroaggregates (8.0 to 2.0 mm) and bulk soil (<2.0 mm) from the 0–5 cm, 5–10 cm, and 10–20 cm layers. High diversity and combinations of plant species in T2-T6, and T8 resulted in higher POC and MON contents in aggregates, and higher MOC and PON contents in bulk soil, when compared to T1 and T7. T2 was a better option to increase LOM and POC contents in aggregates (0-5 cm). The evaluation of POC (0–5 cm), PON, and MON (0-10 cm) contents in soil aggregates showed more significant differences between the treatments than the contents found in bulk soil. The onion crops under NTS combined with use of rotations with soil cover crops were more efficient to improve the evaluated soil attributes than those under CTS.


2016 ◽  
Author(s):  
Mi-Hee Lee ◽  
Jean-Lionel Payeur-Poirier ◽  
Ji-Hyung Park ◽  
Egbert Matzner

Abstract. Heavy storm events may increase the amount of organic matter in runoff from forested watersheds as well as the relation of dissolved to particulate organic matter. Little is known about the behaviour of dissolved and particulate organic N and its relations to C. This study evaluated the effects of monsoon storm events on the runoff fluxes and on the quality of dissolved (< 0.45 µm) and particulate (0.7 µm to 1 mm) organic carbon and nitrogen (DOC, DON, POC, PON) in a mixed coniferous/deciduous (mixed watershed) and a deciduous forested watershed (deciduous watershed) in South Korea. During storm events, DOC concentrations in runoff increased with discharge, while DON concentrations were stable. DOC, DON and NO3-N fluxes in runoff increased linearly with discharge, whereas nonlinear responses of POC and PON fluxes were observed. The cumulative C and N fluxes in runoff were in the order; DOC > POC and NO3-N > DON > PON. The cumulative DOC fluxes in runoff during the 2 months study period were much larger at the deciduous watershed (16 kg C ha−1) than at the mixed watershed (7 kg C ha−1), while the cumulative NO3-N fluxes were higher at the mixed watershed (5.2 kg N ha−1) than at the deciduous watershed (2.9 kg N ha−1). Cumulative fluxes of POC and PON were similar at both watersheds. Quality parameters of organic matter in soils and runoff suggested that the contribution of near surface flow to runoff was larger at the deciduous than at the mixed watershed. Our results demonstrate different responses of dissolved C and N in runoff to storm events as a combined effect of tree species composition and watershed-specific flowpaths.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254121
Author(s):  
Tatiana Rondon ◽  
Rosa Mary Hernandez ◽  
Manuel Guzman

Banana is a staple food and a major export commodity in the tropics. However, banana production systems are affected by the plant-soil relationships, where properties such as quality and quantity of soil organic matter play an important role in the dynamics of soil physical properties. In order to evaluate the effect of the soil organic carbon (SOC) content and its distribution in the water-stable of soil aggregates (WAS), and the physical fractions of the macro-organic matter, a study was conducted in lacustrine soils under Banana cv. ʻGrand Nainʼ in Venezuela. Soil sampling was carried out in two batches differentiated by their textural class and crop production. A completely randomized design under a directed random sampling technique was carried out. In each condition, 12 composite samples were taken at depths 0–5 and 5–10 cm, respectively. WAS were separated into micro (< 250 μm) and macroaggregates (> 250 μm). Also, physical fractionation by size-density of the macro-organic matter into light (LF), intermediate (IF), and heavy (HF) fraction using a silica gel solution, and SOC, were determined and correlated with banana yield and other agronomic traits. A major proportion of aggregates > 250 μm were found in both conditions and depths. Organic Carbon within soil aggregates ranged between 29.7 and 35.3 g kg-1. The HF was superior to IF and LF; however, its C content was higher in the LF. The results allow inferring that the stability conferred to these soils is primarily associated with the presence of the snail, which shares the same size as the aggregates studied. High yields are associated with high C content in stable aggregates, as well as in the most labile fractions of macro-organic matter. These results highlight the importance of the use of organic fertilizers less recalcitrant as a strategy for sustainable management of banana cultivation.


2015 ◽  
Vol 390 (1-2) ◽  
pp. 419-430 ◽  
Author(s):  
Liping Qiu ◽  
Xiaorong Wei ◽  
Tiane Ma ◽  
Yanchun Wei ◽  
Robert Horton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document