scholarly journals Analysis and Improvement of Material Selection for Process Piping System in Offshore Industry

2018 ◽  
Vol 6 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Karan Sotoodeh
2015 ◽  
Vol 12 (5) ◽  
pp. 526-536 ◽  
Author(s):  
Marco Serafini ◽  
Davide Russo ◽  
Caterina Rizzi

Author(s):  
Arvind Keprate ◽  
R. M. Chandima Ratnayake

A typical procedure for a remnant fatigue life (RFL) assessment is stated in the BS-7910 standard. The aforementioned standard provides two different methodologies for estimating RFL; these are: the S-N curve approach and the crack growth laws (i.e. using Linear Elastic Fracture Mechanics (LEFM) principles) approach. Due to its higher accuracy, the latter approach is more commonly used for RFL assessment in the offshore industry. Nevertheless, accurate prediction of RFL using the deterministic LEFM approach (stated in BS-7910) is a challenging task, as RFL prediction is afflicted with a high number of uncertainties. Furthermore, BS-7910 does not provide any recommendation in regard to handling the uncertainty in the deterministic RFL assessment process. The most common way of dealing with the aforementioned uncertainty is to employ Probabilistic Crack Growth (PCG) models for estimating the RFL. This manuscript explains the procedure for addressing the uncertainty in the RFL assessment of process piping with the help of a numerical example. The numerically obtained RFL estimate is used to demonstrate a calculation of inspection interval.


Author(s):  
Patrick Di Marco ◽  
Charles F. Eubanks ◽  
Kos Ishii

Abstract This paper describes a method for evaluating the compatibility of a product design with respect to end-of-life product retirement issues, particularly recyclability. Designers can affect the ease of recycling in two major areas: 1) ease of disassembly, and 2) material selection for compatibility with recycling methods. The proposed method, called “clumping,” involves specification of the level of disassembly and the compatibility analysis of each remaining clump with the design’s post-life intent; i.e., reuse, remanufacturing, recycling, or disposal. The method uses qualitative knowledge to assign a normalized measure of compatibility to each clump. An empirical cost function maps the measure to an estimated cost to reprocess the product. The method is an integral part of our life-cycle design computer tool that effectively guides engineers to an environmentally responsible product design. A refrigerator in-door ice dispenser serves as an illustrative example.


2019 ◽  
Vol 84 ◽  
pp. 16-33 ◽  
Author(s):  
Lei Zhang ◽  
Guojing Yang ◽  
Blake N. Johnson ◽  
Xiaofeng Jia

2015 ◽  
Vol 2 (3) ◽  
pp. 190-196 ◽  
Author(s):  
B. A. Pint ◽  
K. A. Terrani ◽  
Y. Yamamoto ◽  
L. L. Snead

Sign in / Sign up

Export Citation Format

Share Document