bone repair
Recently Published Documents


TOTAL DOCUMENTS

2265
(FIVE YEARS 1017)

H-INDEX

85
(FIVE YEARS 28)

2022 ◽  
Vol 12 (5) ◽  
pp. 958-963
Author(s):  
Fei Gao ◽  
Xiaoming Wu ◽  
Zhao Guo ◽  
Jianzhong Wang ◽  
Wenshan Gao ◽  
...  

This study explored whether teriparatide promotes BMSCs proliferation and differentiation via downregulating miR-298 and provided a basis for bone repair. Based on the microarray analysis after teriparatide treatment, qRT-PCR verified the differentially expressed miRNAs and the osteogenic differentiation was assessed by transfection of miRNA overexpression plasmids and miRNA inhibitors. miRNA array analysis and qRT-PCR verification showed that miR-298 was significantly downregulated during teriparatide-induced BMSCs differentiation. miR-298 overexpression significantly inhibited ALP and OPN expression which was promoted by transfection of miR-298 inhibitor. miR-298 is a negative regulator of BMSCs differentiation induced by teriparatide. Dlx5 is the target of miR-298. Inhibition of DLX5 expression by miR-298 was involved in the osteogenic differentiation of BMSCs. In conclusion, miR-298 negatively regulates the differentiation of BMSCs induced by teriparatide by targeting DLX5, providing a possible therapeutic target for bone tissue repair and regeneration.


2022 ◽  
Vol 74 ◽  
pp. 220-229
Author(s):  
Iman Roohani ◽  
Giselle C Yeo ◽  
Suzanne M Mithieux ◽  
Anthony S Weiss
Keyword(s):  

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Liying Sun ◽  
Shan Li ◽  
Kaifeng Yang ◽  
Junchao Wang ◽  
Zhengjun Li ◽  
...  

AbstractIn this study, we aimed at constructing polycaprolactone (PCL) reinforced keratin/bioactive glass composite scaffolds with a double cross-linking network structure for potential bone repair application. Thus, the PCL-keratin-BG composite scaffold was prepared by using keratin extracted from wool as main organic component and bioactive glass (BG) as main inorganic component, through both cross-linking systems, such as the thiol-ene click reaction between abundant sulfhydryl groups of keratin and the unsaturated double bond of 3-methacryloxy propyltrimethoxy silane (MPTS), and the amino-epoxy reaction between amino groups of keratin and the epoxy group in (3-glycidoxymethyl) methyldiethoxysilane (GPTMS) molecule, along with introduction of PCL as a reinforcing agent. The success of the thiol-ene reaction was verified by the FTIR and 1H-NMR analyses. And the structure of keratin-BG and PCL-keratin-BG composite scaffolds were studied and compared by the FTIR and XRD characterization, which indicated the successful preparation of the PCL-keratin-BG composite scaffold. In addition, the SEM observation, and contact angle and water absorption rate measurements demonstrated that the PCL-keratin-BG composite scaffold has interconnected porous structure, appropriate pore size and good hydrophilicity, which is helpful to cell adhesion, differentiation and proliferation. Importantly, compression experiments showed that, when compared with the keratin-BG composite scaffold, the PCL-keratin-BG composite scaffold increased greatly from 0.91 ± 0.06 MPa and 7.25 ± 1.7 MPa to 1.58 ± 0.21 MPa and 14.14 ± 1.95 MPa, respectively, which suggesting the strong reinforcement of polycaprolactone. In addition, the biomineralization experiment and MTT assay indicated that the PCL-keratin-BG scaffold has good mineralization ability and no-cytotoxicity, which can promote cell adhesion, proliferation and growth. Therefore, the results suggested that the PCL-keratin-BG composite scaffold has the potential as a candidate for application in bone regeneration field. Graphical Abstract


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Antonio J. Salinas ◽  
Pedro Esbrit

Throughout her impressive scientific career, Prof. María Vallet-Regí opened various research lines aimed at designing new bioceramics, including mesoporous bioactive glasses for bone tissue engineering applications. These bioactive glasses can be considered a spin-off of silica mesoporous materials because they are designed with a similar technical approach. Mesoporous glasses in addition to SiO2 contain significant amounts of other oxides, particularly CaO and P2O5 and therefore, they exhibit quite different properties and clinical applications than mesoporous silica compounds. Both materials exhibit ordered mesoporous structures with a very narrow pore size distribution that are achieved by using surfactants during their synthesis. The characteristics of mesoporous glasses made them suitable to be enriched with various osteogenic agents, namely inorganic ions and biopeptides as well as mesenchymal cells. In the present review, we summarize the evolution of mesoporous bioactive glasses research for bone repair, with a special highlight on the impact of Prof. María Vallet-Regí´s contribution to the field.


Author(s):  
Weishi Liang ◽  
Bo Han ◽  
Yong Hai ◽  
Duan Sun ◽  
Peng Yin

Exosomes are extracellular vesicles formed by various donor cells that regulate gene expression and cellular function in recipient cells. Exosomes derived from mesenchymal stem cells (MSC-Exos) perform the regulatory function of stem cells by transporting proteins, nucleic acids, and lipids. Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, and it is characterized by a decreased number of nucleus pulposus cells, extracellular matrix decomposition, aging of the annulus fibrosus, and cartilage endplate calcification. Besides, nutrient transport and structural repair of intervertebral discs depend on bone and cartilage and are closely related to the state of the bone. Trauma, disease and aging can all cause bone injury. However, there is a lack of effective drugs against IDD and bone injury. Recent MSC-Exos fine tuning has led to significant progress in the IDD treatment and bone repair and regeneration. In this review, we looked at the uniqueness of MSC-Exos, and the potential treatment mechanisms of MSC-Exos with respect to IDD, bone defects and injuries.


2022 ◽  
pp. 2102344
Author(s):  
Fei Fang ◽  
Roscoe T. H. Linstadt ◽  
Guy M. Genin ◽  
Kollbe Ahn ◽  
Stavros Thomopoulos
Keyword(s):  

2022 ◽  
Vol 23 (2) ◽  
pp. 832
Author(s):  
Kenny Man ◽  
Inês A. Barroso ◽  
Mathieu Y. Brunet ◽  
Ben Peacock ◽  
Angelica S. Federici ◽  
...  

Extracellular vesicles (EVs) have garnered growing attention as promising acellular tools for bone repair. Although EVs’ potential for bone regeneration has been shown, issues associated with their therapeutic potency and short half-life in vivo hinders their clinical utility. Epigenetic reprogramming with the histone deacetylase inhibitor Trichostatin A (TSA) has been reported to promote the osteoinductive potency of osteoblast-derived EVs. Gelatin methacryloyl (GelMA) hydrogels functionalised with the synthetic nanoclay laponite (LAP) have been shown to effectively bind, stabilise, and improve the retention of bioactive factors. This study investigated the potential of utilising a GelMA-LAP hydrogel to improve local retention and control delivery of epigenetically enhanced osteoblast-derived EVs as a novel bone repair strategy. LAP was found to elicit a dose-dependent increase in GelMA compressive modulus and shear-thinning properties. Incorporation of the nanoclay was also found to enhance shape fidelity when 3D printed compared to LAP-free gels. Interestingly, GelMA hydrogels containing LAP displayed increased mineralisation capacity (1.41-fold) (p ≤ 0.01) over 14 days. EV release kinetics from these nanocomposite systems were also strongly influenced by LAP concentration with significantly more vesicles being released from GelMA constructs as detected by a CD63 ELISA (p ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) enhanced proliferation (1.09-fold), migration (1.83-fold), histone acetylation (1.32-fold) and mineralisation (1.87-fold) of human bone marrow stromal cells (hBMSCs) when released from the GelMA-LAP hydrogel compared to the untreated EV gels (p ≤ 0.01). Importantly, the TSA-EV functionalised GelMA-LAP hydrogel significantly promoted encapsulated hBMSCs extracellular matrix collagen production (≥1.3-fold) and mineralisation (≥1.78-fold) in a dose-dependent manner compared to untreated EV constructs (p ≤ 0.001). Taken together, these findings demonstrate the potential of combining epigenetically enhanced osteoblast-derived EVs with a nanocomposite photocurable hydrogel to promote the therapeutic efficacy of acellular vesicle approaches for bone regeneration.


Author(s):  
M. Orth ◽  
T. Fritz ◽  
J. Stutz ◽  
C. Scheuer ◽  
B. Ganse ◽  
...  

Deficient angiogenesis and disturbed osteogenesis are key factors for the development of nonunions. Mineral-coated microparticles (MCM) represent a sophisticated carrier system for the delivery of vascular endothelial growth factor (VEGF) and bone morphogenetic protein (BMP)-2. In this study, we investigated whether a combination of VEGF- and BMP-2-loaded MCM (MCM + VB) with a ratio of 1:2 improves bone repair in non-unions. For this purpose, we applied MCM + VB or unloaded MCM in a murine non-union model and studied the process of bone healing by means of radiological, biomechanical, histomorphometric, immunohistochemical and Western blot techniques after 14 and 70 days. MCM-free non-unions served as controls. Bone defects treated with MCM + VB exhibited osseous bridging, an improved biomechanical stiffness, an increased bone volume within the callus including ongoing mineralization, increased vascularization, and a histologically larger total periosteal callus area consisting predominantly of osseous tissue when compared to defects of the other groups. Western blot analyses on day 14 revealed a higher expression of osteoprotegerin (OPG) and vice versa reduced expression of receptor activator of NF-κB ligand (RANKL) in bone defects treated with MCM + VB. On day 70, these defects exhibited an increased expression of erythropoietin (EPO), EPO-receptor and BMP-4. These findings indicate that the use of MCM for spatiotemporal controlled delivery of VEGF and BMP-2 shows great potential to improve bone healing in atrophic non-unions by promoting angiogenesis and osteogenesis as well as reducing early osteoclast activity.


Author(s):  
Tingting Huang ◽  
Zhihao Zhou ◽  
Qiaoyuan Li ◽  
Xiaoxuan Tang ◽  
Xiaoli Chen ◽  
...  

Successful control of massive hemorrhage in deep wounds with irregular shape and low elasticity still remains great challenges in the clinic. As the wound sites are usually at risk of bacterial infection, it is necessary to design an ideal hemostatic agent with rapid hemostasis and excellent antibacterial activity. In this study, we developed a light responsive hemostatic film for effective handling of liver bleeding with promising photodynamic therapy against S. aureus onnear infrared (NIR) irradiation. Based on silk fibroin, the film exhibited desirable biocompatibility and mechanical property as a hemostat tape. Significantly, the film tape achieved excellent tissue adhesion and hemostasis in vivo within 2 min of UV exposure, which would have a great potential as a multifunctional biomedical material in the field of tissue repair such as wound healing, bone repair, and nerve regeneration.


Nano Letters ◽  
2022 ◽  
Author(s):  
Peng Pei ◽  
Hongxing Hu ◽  
Ying Chen ◽  
Shangfeng Wang ◽  
Jing Chen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document