Three-dimensional (3D) printed scaffold and material selection for bone repair

2019 ◽  
Vol 84 ◽  
pp. 16-33 ◽  
Author(s):  
Lei Zhang ◽  
Guojing Yang ◽  
Blake N. Johnson ◽  
Xiaofeng Jia
2021 ◽  
Vol 7 (4) ◽  
pp. 426
Author(s):  
Chengxiong Lin ◽  
Yaocheng Wang ◽  
Zhengyu Huang ◽  
Tingting Wu ◽  
Weikang Xu ◽  
...  

Conventional bone repair scaffolds can no longer meet the high standards and requirements of clinical applications in terms of preparation process and service performance. Studies have shown that the diversity of filament structures of implantable scaffolds is closely related to their overall properties (mechanical properties, degradation properties, and biological properties). To better elucidate the characteristics and advantages of different filament structures, this paper retrieves and summarizes the state of the art in the filament structure of the three-dimensional (3D) bioprinted biodegradable bone repair scaffolds, mainly including single-layer structure, double-layer structure, hollow structure, core-shell structure and bionic structures. The eximious performance of the novel scaffolds was discussed from different aspects (material composition, ink configuration, printing parameters, etc.). Besides, the additional functions of the current bone repair scaffold, such as chondrogenesis, angiogenesis, anti-bacteria, and anti-tumor, were also concluded. Finally, the paper prospects the future material selection, structural design, functional development, and performance optimization of bone repair scaffolds.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Yanhao Hou ◽  
Weiguang Wang ◽  
Paulo Jorge Da Silva Bartolo

Scaffolds, three-dimensional (3D) substrates providing appropriate mechanical support and biological environments for new tissue formation, are the most common approaches in tissue engineering. To improve scaffold properties such as mechanical properties, surface characteristics, biocompatibility and biodegradability, different types of fillers have been used reinforcing biocompatible and biodegradable polymers. This paper investigates and compares the mechanical and biological behaviors of 3D printed poly(ε-caprolactone) scaffolds reinforced with graphene (G) and graphene oxide (GO) at different concentrations. Results show that contrary to G which improves mechanical properties and enhances cell attachment and proliferation, GO seems to show some cytotoxicity, particular at high contents.


Author(s):  
Yang Sun ◽  
Xing Zhang ◽  
Mingran Luo ◽  
Weifan Hu ◽  
Li Zheng ◽  
...  

Surface modification of three-dimensional (3D)-printed titanium (Ti) scaffolds with hydroxyapatite (HA) has been a research hotspot in biomedical engineering. However, unlike HA coatings on a plain surface, 3D-printed Ti scaffolds have inherent porous structures that influence the characteristics of HA coatings and osteointegration. In the present study, HA coatings were successfully fabricated on 3D-printed Ti scaffolds using plasma spray and electrochemical deposition, named plasma sprayed HA (PSHA) and electrochemically deposited HA (EDHA), respectively. Compared to EDHA scaffolds, HA coatings on PSHA scaffolds were smooth and continuous. In vitro cell studies confirmed that PSHA scaffolds have better potential to promote bone mesenchymal stem cell adhesion, proliferation, and osteogenic differentiation than EDHA scaffolds in the early and late stages. Moreover, in vivo studies showed that PSHA scaffolds were endowed with superior bone repair capacity. Although the EDHA technology is simpler and more controllable, its limitation due to the crystalline and HA structures needs to be improved in the future. Thus, we believe that plasma spray is a better choice for fabricating HA coatings on implanted scaffolds, which may become a promising method for treating bone defects.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1717 ◽  
Author(s):  
Zelong Xie ◽  
Ming Gao ◽  
Anderson O. Lobo ◽  
Thomas J. Webster

Three-dimensional (3D) printing, as one of the most popular recent additive manufacturing processes, has shown strong potential for the fabrication of biostructures in the field of tissue engineering, most notably for bones, orthopedic tissues, and associated organs. Desirable biological, structural, and mechanical properties can be achieved for 3D-printed constructs with a proper selection of biomaterials and compatible bioprinting methods, possibly even while combining additive and conventional manufacturing (AM and CM) procedures. However, challenges remain in the need for improved printing resolution (especially at the nanometer level), speed, and biomaterial compatibilities, and a broader range of suitable 3D-printed materials. This review provides an overview of recent advances in the development of 3D bioprinting techniques, particularly new hybrid 3D bioprinting technologies for combining the strengths of both AM and CM, along with a comprehensive set of material selection principles, promising medical applications, and limitations and future prospects.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5437
Author(s):  
Izabela Rojek ◽  
Dariusz Mikołajewski ◽  
Ewa Dostatni ◽  
Marek Macko

While the intensity, complexity, and specificity of robotic exercise may be supported by patient-tailored three-dimensional (3D)-printed solutions, their performance can still be compromised by non-optimal combinations of technological parameters and material features. The main focus of this paper was the computational optimization of the 3D-printing process in terms of features and material selection in order to achieve the maximum tensile force of a hand exoskeleton component, based on artificial neural network (ANN) optimization supported by genetic algorithms (GA). The creation and 3D-printing of the selected component was achieved using Cura 0.1.5 software and 3D-printed using fused filament fabrication (FFF) technology. To optimize the material and process parameters we compared ten selected parameters of the two distinct printing materials (polylactic acid (PLA), PLA+) using ANN supported by GA built and trained in the MATLAB environment. To determine the maximum tensile force of the exoskeleton, samples were tested using an INSTRON 5966 universal testing machine. While the balance between the technical requirements and user safety constraints requires further analysis, the PLA-based 3D-printing parameters have been optimized. Additive manufacturing may support the successful printing of usable/functional exoskeleton components. The network indicated which material should be selected: Namely PLA+. AI-based optimization may play a key role in increasing the performance and safety of the final product and supporting constraint satisfaction in patient-tailored solutions.


Sign in / Sign up

Export Citation Format

Share Document