Speed Control of Unmanned Ground Vehicle for Non Autonomous Operation

Author(s):  
Khaled Sailan ◽  
Klaus-Dieter Kuhnert
2019 ◽  
Vol 186 (2-3) ◽  
pp. 249-256
Author(s):  
Tomas Lazna ◽  
Ota Fisera ◽  
Jaroslav Kares ◽  
Ludek Zalud

Abstract The article discusses an autonomous and flexible robotic system for radiation monitoring. The detection part of the system comprises two NaI(Tl) scintillation detectors: one of these is collimated to allow directionally sensitive measurements and the other is used to calculate the dose rate and provides sufficient sensitivity. Special algorithms for autonomous operation of an unmanned ground vehicle were developed, utilizing radiation characteristics acquired by the implemented detection system. The system was designed to operate in three modes: radiation mapping, localization of discrete sources and inspection of a region of interest. All of the modes were verified experimentally. In the localization mode, the time required to localize ionizing radiation sources was reduced by half compared to the field mapping mode exploiting parallel trajectories; the localization accuracy remained the same. In the inspection mode, the desired functionality was achieved, and the changes in the sources arrangement were detected reliably in the experiments.


ROBOT ◽  
2013 ◽  
Vol 35 (6) ◽  
pp. 657 ◽  
Author(s):  
Taoyi ZHANG ◽  
Tianmiao WANG ◽  
Yao WU ◽  
Qiteng ZHAO

Author(s):  
Prajot P. Kulkarni ◽  
Shubham R. Kutre ◽  
Shravan S. Muchandi ◽  
Pournima Patil ◽  
Shankargoud Patil

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiao Liang ◽  
Honglun Wang ◽  
Haitao Luo

The UAV/UGV heterogeneous system combines the air superiority of UAV (unmanned aerial vehicle) and the ground superiority of UGV (unmanned ground vehicle). The system can complete a series of complex tasks and one of them is pursuit-evasion decision, so a collaborative strategy of UAV/UGV heterogeneous system is proposed to derive a pursuit-evasion game in complex three-dimensional (3D) polygonal environment, which is large enough but with boundary. Firstly, the system and task hypothesis are introduced. Then, an improved boundary value problem (BVP) is used to unify the terrain data of decision and path planning. Under the condition that the evader knows the position of collaborative pursuers at any time but pursuers just have a line-of-sight view, a worst case is analyzed and the strategy between the evader and pursuers is studied. According to the state of evader, the strategy of collaborative pursuers is discussed in three situations: evader is in the visual field of pursuers, evader just disappears from the visual field of pursuers, and the position of evader is completely unknown to pursuers. The simulation results show that the strategy does not guarantee that the pursuers will win the game in complex 3D polygonal environment, but it is optimal in the worst case.


2014 ◽  
Vol 668-669 ◽  
pp. 1174-1177 ◽  
Author(s):  
Hai Yan Shao ◽  
Zhen Hai Zhang ◽  
Ke Jie Li ◽  
Jian Wang ◽  
Tao Xu ◽  
...  

Autonomous off-road navigation is a highly complicated task for a robot or unmanned ground vehicle (UGV) owing to the different kinds of obstacles it could encounter. In-particular, water hazards such as puddles and ponds are very common in outdoor environments and are hard to detect even with ranging devices due to the specular nature of reflection at the air water interface. In recent years, many researches to detect the water bodies have been done. But there still has been very little work on detecting bodies of water that could be navigation hazards, especially at night. In this paper, we used Velodyne HDL-64ES2 3D LIDAR to detect water hazard. The approach first analyzes the data format and transformation of 3D LIDAR, and then writes the data acquisition and visualizations algorithm, integrated data based on ICP algorithm. Finally according the intensity distribution identifies the water hazard. Experiments are carried out on the experimental car in campus, and results show the promising performance.


2000 ◽  
Author(s):  
Richard W. Wies ◽  
Jerias Mitchell ◽  
Stephen Daniels ◽  
Joseph G. Hawkins

Sign in / Sign up

Export Citation Format

Share Document