scholarly journals A NEW ONE PARAMETER FAMILY OF ITERATIVE METHODS WITH EIGHTH-ORDER OF CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS

Author(s):  
H.I. Siyyam ◽  
M.T. Shatnawi ◽  
I.A. Al-Subaihi
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
J. P. Jaiswal

It is attempted to present two derivative-free Steffensen-type methods with memory for solving nonlinear equations. By making use of a suitable self-accelerator parameter in the existing optimal fourth- and eighth-order without memory methods, the order of convergence has been increased without any extra function evaluation. Therefore, its efficiency index is also increased, which is the main contribution of this paper. The self-accelerator parameters are estimated using Newton’s interpolation. To show applicability of the proposed methods, some numerical illustrations are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Anuradha Singh ◽  
J. P. Jaiswal

The prime objective of this paper is to design a new family of optimal eighth-order iterative methods by accelerating the order of convergence of the existing seventh-order method without using more evaluations for finding simple root of nonlinear equations. Numerical comparisons have been carried out to demonstrate the efficiency and performance of the proposed method. Finally, we have compared new method with some existing eighth-order methods by basins of attraction and observed that the proposed scheme is more efficient.


2012 ◽  
Vol 59 (1) ◽  
pp. 159-171 ◽  
Author(s):  
Fazlollah Soleymani ◽  
S. Karimi Vanani ◽  
Hani I. Siyyam ◽  
I. A. Al-Subaihi

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fiza Zafar ◽  
Gulshan Bibi

We present a family of fourteenth-order convergent iterative methods for solving nonlinear equations involving a specific step which when combined with any two-step iterative method raises the convergence order by n+10, if n is the order of convergence of the two-step iterative method. This new class include four evaluations of function and one evaluation of the first derivative per iteration. Therefore, the efficiency index of this family is 141/5 =1.695218203. Several numerical examples are given to show that the new methods of this family are comparable with the existing methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We construct a biparametric family of fourth-order iterative methods to compute multiple roots of nonlinear equations. This method is verified to be optimally convergent. Various nonlinear equations confirm our proposed method with order of convergence of four and show that the computed asymptotic error constant agrees with the theoretical one.


2018 ◽  
Vol 14 (1) ◽  
pp. 179-187
Author(s):  
Jivandhar Jnawali ◽  
Chet Raj Bhatta

 The main purpose of this paper is to derive two higher order iterative methods for solving nonlinear equations as variants of Mir, Ayub and Rafiq method. These methods are free from higher order derivatives. We obtain these methods by amalgamating Mir, Ayub and Rafiq method with standard secant method and modified secant method given by Amat and Busquier. The order of convergence of new variants are four and six. Also, numerical examples are given to compare the performance of newly introduced methods with the similar existing methods. 2010 AMS Subject Classification: 65H05 Journal of the Institute of Engineering, 2018, 14(1): 179-187


2016 ◽  
Vol 291 ◽  
pp. 348-357 ◽  
Author(s):  
Alicia Cordero ◽  
Alberto Magreñán ◽  
Carlos Quemada ◽  
Juan R. Torregrosa

Sign in / Sign up

Export Citation Format

Share Document