Approximation of Physical Spline with Large Deflections

2021 ◽  
pp. 3-18
Author(s):  
Viktor Korotkiy ◽  
Igor' Vitovtov

Physical spline is a resilient element whose cross-sectional dimensions are very small compared to its axis’s length and radius of curvature. Such a resilient element, passing through given points, acquires a "nature-like" form, having a minimum energy of internal stresses, and, as a consequence, a minimum of average curvature. For example, a flexible metal ruler, previously used to construct smooth curves passing through given coplanar points, can be considered as a physical spline. The theoretical search for the equation of physical spline’s axis is a complex mathematical problem with no elementary solution. However, the form of a physical spline passing through given points can be obtained experimentally without much difficulty. In this paper polynomial and parametric methods for approximation of experimentally produced physical spline with large deflections are considered. As known, in the case of small deflections it is possible to obtain a good approximation to a real elastic line by a set of cubic polynomials ("cubic spline"). But as deflections increase, the polynomial model begins to differ markedly from the experimental physical spline, that limits the application of polynomial approximation. High precision approximation of an elastic line with large deflections is achieved by using a parameterized description based on Ferguson or Bézier curves. At the same time, not only the basic points, but also the tangents to the elastic line of the real physical spline should be given as boundary conditions. In such a case it has been shown that standard cubic Bézier curves have a significant computational advantage over Ferguson ones. Examples for modelling of physical splines with free and clamped ends have been considered. For a free spline an error of parametric approximation is equal to 0.4 %. For a spline with clamped ends an error of less than 1.5 % has been obtained. The calculations have been performed with SMath Studio computer graphics system.

2021 ◽  
Vol 9 (1) ◽  
pp. 3-19
Author(s):  
Viktor Korotkiy ◽  
Igor' Vitovtov

Physical spline is a resilient element whose cross-sectional dimensions are very small compared to its axis’s length and radius of curvature. Such a resilient element, passing through given points, acquires a "nature-like" form, having a minimum energy of internal stresses, and, as a consequence, a minimum of average curvature. For example, a flexible metal ruler, previously used to construct smooth curves passing through given coplanar points, can be considered as a physical spline. The theoretical search for the equation of physical spline’s axis is a complex mathematical problem with no elementary solution. However, the form of a physical spline passing through given points can be obtained experimentally without much difficulty. In this paper polynomial and parametric methods for approximation of experimentally produced physical spline with large deflections are considered. As known, in the case of small deflections it is possible to obtain a good approximation to a real elastic line by a set of cubic polynomials ("cubic spline"). But as deflections increase, the polynomial model begins to differ markedly from the experimental physical spline, that limits the application of polynomial approximation. High precision approximation of an elastic line with large deflections is achieved by using a parameterized description based on Ferguson or Bézier curves. At the same time, not only the basic points, but also the tangents to the elastic line of the real physical spline should be given as boundary conditions. In such a case it has been shown that standard cubic Bézier curves have a significant computational advantage over Ferguson ones. Examples for modelling of physical splines with free and clamped ends have been considered. For a free spline an error of parametric approximation is equal to 0.4 %. For a spline with clamped ends an error of less than 1.5 % has been obtained. The calculations have been performed with SMath Studio computer graphics system.


2021 ◽  
Vol 2021 (6) ◽  
pp. 11-22
Author(s):  
Viktor Korotkiy ◽  
Igor' Vitovtov

A physical spline is called an elastic rod the cross- section dimensions of which are rather small as compared with the length and radius of its axis curvature. Such a rod when passing through specified points obtains in natural way a nature-like shape characterized with minimum energy of inner stresses and minimum mean curvature. A search for the equation of elastic line is a difficult mathematical problem having no elementary solution. The work purpose: the development of the experimental-rated procedure for modeling a nature-like elastic curve passing through complanar points specified in advance. The investigation methods: methods of piece-cubic interpolation based on the application of polynomial splines and compound curves specified by parametric equations. In the paper there are considered polynomial and parametric methods of the geometric modeling of the physical spline passing through the points specified in advance. The elastic line of the physical spline is obtained experimentally. The investigation results: it is shown that unlike a polynomial model a parametrized model on the basis of Fergusson curve gives high accuracy of approximation if in basic points there are specified tangents to the elastic line of the physical spline with large deflections. Novelty: there is offered a simplified method for the computation of factors of an approximating spline allowing the substitution of the 2n system of nonlinear equations (smoothness conditions) by the successive solution of n systems of two equations. Conclusions: for the modeling of nature-like curves with large deflections there is offered the application of Fergusson cubic spline passing through specified points and touching the specified straight lines in these points. The error of the modeling of the natural elastic line with free ends at n=5 does not exceed 0.4%.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 313
Author(s):  
Hector A. Tinoco ◽  
Daniel R. Barco ◽  
Olga Ocampo ◽  
Jaime Buitrago-Osorio

The computer-aided design of fruits are used for different purposes, e.g., to determine mechanical properties by applying engineering simulations, to design postharvest equipment, and to study the natural changes related to the topology. This paper developed a methodology to model Valencia orange (Citrus sinensis), applying Bézier curves and an image-based CAD approach; the orange geometry was designed for different ripening stages. In the modeling process, a 3D construction was carried out using third-order Bézier curves, adjusted to the images taken in orthogonal planes. Four control points defined each profile to compose the geometric pattern of the orange, with geometric errors lower than 3%. Two prediction models were proposed to relate the orthogonal dimensions with a factor size; this means that two dimensions out of three can be predicted. The results showed that the shape ratios kept constant in any ripening stage; however, the radius of curvature evidenced differences in the analyzed shape profiles. The methodological framework presented in the paper might be used to draw other types of citrus fruits. This contribution is a tool to model fruits in 3D, instead of using expensive technological equipment, since it is only necessary to apply computer design tools.


2017 ◽  
Vol 89 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Alessandro Ceruti ◽  
Pier Marzocca

Purpose This paper aims to describe a methodology to optimize the trajectory of unconventional airship performing a high-altitude docking manoeuvre. Design/methodology/approach The trajectories are based upon Bezier curves whose control points positions are optimized through particle swarm optimization algorithm. A minimum energy strategy is implemented by considering the airship physical properties. The paper describes the mathematical model of the airships, the trajectories modelling through Bezier’s curves and the optimization framework. A series of test cases has been developed to evaluate the proposed methodology. Findings Results obtained show that the implemented procedure is able to optimize the airship trajectories and to support their in-flight docking; a strong influence of the wind speed and course on the trajectories planning is highlighted. Research limitations/implications The wind speed considered in these simulations depends only on altitude, and gusts effect has been neglected. Practical implications The proposed model can support the study of unconventional airship trajectories and can be useful to evaluate best in-air docking strategies. Originality/value The paper addresses the problem of trajectory optimization for a class of new air vehicles with an heuristic approach.


2018 ◽  
Vol 11 (94) ◽  
pp. 4655-4663
Author(s):  
Carlos Acevedo Penaloza ◽  
Miguel Daza Buitrago ◽  
Gaudy Prada Botia

2021 ◽  
Author(s):  
Satyanarayana G. Manyam ◽  
David Casbeer ◽  
Isaac E. Weintraub ◽  
Dzung M. Tran ◽  
Justin M. Bradley ◽  
...  

2021 ◽  
Vol Accepted ◽  
Author(s):  
Bayram Şahin ◽  
Aslı Ayar

Sign in / Sign up

Export Citation Format

Share Document