Effects of Rizoma Arisaematis, a Traditional Chinese Natural Medicine, on In Vitro Development of Mouse In Vivo Zygotes and Embryos Produced by Intracytoplasmic Sperm Injection and Somatic Cell Nuclear Transfer

2012 ◽  
Vol 29 (3) ◽  
pp. 128-134
Author(s):  
Takaaki Sugimoto ◽  
Yuta Tsuji ◽  
Yoko Kato ◽  
Yukio Tsunoda
Zygote ◽  
2008 ◽  
Vol 16 (3) ◽  
pp. 211-222 ◽  
Author(s):  
Wakayama Sayaka ◽  
Kishigami Satoshi ◽  
Nguyen Van Thuan ◽  
Ohta Hiroshi ◽  
Hikichi Takafusa ◽  
...  

SummaryAnimal cloning methods are now well described and are becoming routine. Yet, the frequency at which live cloned offspring are produced remains below 5%, irrespective of the nuclear donor species or cell type. One possible explanation is that the reprogramming factor(s) of each oocyte is insufficient or not properly adapted for the receipt of a somatic cell nucleus, because it is naturally prepared only for the receipt of a gamete. Here, we have increased the oocyte volume by oocyte fusion and examined its subsequent development. We constructed oocytes with volumes two to nine times greater than the normal volume by the electrofusion or mechanical fusion of intact and enucleated oocytes. We examined their in vitro and in vivo developmental potential after parthenogenetic activation, intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT). When the fused oocytes were activated parthenogenetically, most developed to morulae or blastocysts, regardless of their original size. Diploid fused oocytes were fertilized by ICSI and developed normally and after embryo transfer, we obtained 12 (4–15%) healthy and fertile offspring. However, enucleated fused oocytes could not support the development of mice cloned by SCNT. These results suggest that double fused oocytes have normal potential for development after fertilization, but oocytes with extra cytoplasm do not have enhanced reprogramming potential.


2017 ◽  
Author(s):  
◽  
Bethany Rae Mordhorst

Gene edited pigs serve as excellent models for biomedicine and agriculture. Currently, the most efficient way to make a reliably-edited transgenic animal is through somatic cell nuclear transfer (SCNT) also known as cloning. This process involves using cells from a donor (which may have been gene edited) that are typically grown in culture and using their nuclear content to reconstruct a new zygote. To do this, the cell may be placed in the perivitelline space of an enucleated oocyte and activated artificially by a calcium-containing media and electrical pulse waves. While it is remarkable that this process works, it is highly inefficient. In pigs the success of transferred embryos becoming live born piglets is only 1-3%. The creation of more cloned pigs enables further study for the benefit of both A) biomedicine in the development of prognosis and treatments and B) agriculture, whether it be for disease resistance, feed efficiency, gas emissions, etc. Two decades of research has not drastically improved the cloning efficiency of most mammals. One of the main impediments to successful cloning is thought to be due to inefficient nuclear reprogramming and remodeling of the donor cell nucleus. In the following chapters we detail our efforts to improve nuclear reprogramming of porcine fetal fibroblasts by altering the metabolism to be more blastomere-like in nature. We used two methods to alter metabolism 1) pharmaceutical agents and 2) hypoxia. After treating donor cells both methods were used in nuclear transfer. Pharmaceutical agents did not improve in vitro development of gestational survival of clones. Hypoxia did improve in vitro development and we are currently awaiting results of gestation.


2006 ◽  
Vol 66 (5) ◽  
pp. 1237-1242 ◽  
Author(s):  
Ni Wayan Kurniani Karja ◽  
Takeshige Otoi ◽  
Pimprapar Wongsrikeao ◽  
Ryohei Shimizu ◽  
Masako Murakami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document