rabbit embryos
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 12)

H-INDEX

30
(FIVE YEARS 1)

Cell Reports ◽  
2021 ◽  
Vol 37 (2) ◽  
pp. 109812
Author(s):  
Toshihiro Kobayashi ◽  
Aracely Castillo-Venzor ◽  
Chris A. Penfold ◽  
Michael Morgan ◽  
Naoaki Mizuno ◽  
...  

Author(s):  
Sophie Calderari ◽  
Nathalie Daniel ◽  
Eve Mourier ◽  
Christophe Richard ◽  
Michele Dahirel ◽  
...  

Abstract The success of embryo development and implantation depends in part on the environment in which the embryo evolves. However, the composition of the uterine fluid surrounding the embryo in the peri-implantation period remains poorly studied. In this work, we aimed to develop a new strategy to visualize, collect, and analyze both blastocoelic liquid and juxta-embryonic uterine fluid from in vivo peri-implantation rabbit embryos. Using high-resolution ultrasound biomicroscopy, embryos were observed as fluid-filled anechoic vesicles, some of which were surrounded by a thin layer of uterine fluid. Ultrasound-guided puncture and aspiration of both the blastocoelic fluid contained in the embryo and the uterine fluid in the vicinity of the embryo were performed. Using nuclear magnetic resonance spectroscopy, altogether 24 metabolites were identified and quantified, of which 21 were detected in both fluids with a higher concentration in the uterus compared to the blastocoel. In contrast, pyruvate was detected at a higher concentration in blastocoelic compared to uterine fluid. Two acidic amino acids, glutamate and aspartate, were not detected in uterine fluid in contrast to blastocoelic fluid, suggesting a local regulation of uterine fluid composition. To our knowledge, this is the first report of simultaneous analysis of blastocoelic and uterine fluids collected in vivo at the time of implantation in mammals, shedding new insight for understanding the relationship between the embryo and its local environment at this critical period of development.


Cryobiology ◽  
2020 ◽  
Vol 97 ◽  
pp. 293-294
Author(s):  
Ximo Garcia-Dominguez ◽  
Gianfranco Diretto ◽  
Jose S. Vicente ◽  
Francisco Marco-Jimenez

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Ting Zhang ◽  
Rui Lu ◽  
Yibing Chen ◽  
Yuguo Yuan ◽  
Shaozheng Song ◽  
...  

Abstract Background Congenital hyper-homocysteinemia (HHcy) is caused by a defective cystathionine β-synthase (CBS) gene, and is frequently associated with dyslipdemia. The aim of this study was to further elucidate the effect of mutated CBS gene on circulating lipids using a rabbit model harboring a homozygous G307S point mutation in CBS. Methods CRISPR/Cas9 system was used to edit the CBS gene in rabbit embryos. The founder rabbits were sequenced, and their plasma homocysteine (Hcy) and lipid profile were analyzed. Results Six CBS-knockout (CBS-KO) founder lines with biallelic modifications were obtained. Mutation in CBS caused significant growth retardation and high mortality rates within 6 weeks after birth. In addition, the 6-week old CBS-KO rabbits showed higher plasma levels of Hcy, triglycerides (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) compared to the age-matched wild-type (WT) controls. Histological analysis of the mutants showed accumulation of micro-vesicular cytoplasmic lipid droplets in the hepatocytes. However, gastric infusion of vitamin B and betaine complex significantly decreased the plasma levels of TG, TC and LDL-C in the CBS-KO rabbits, and alleviated hepatic steatosis compared to the untreated animals. Conclusion A CBSG307S rabbit model was generated that exhibited severe dyslipidemia when fed on a normal diet, indicating that G307S mutation in the CBS gene is a causative factor for dyslipidemia.


2020 ◽  
Author(s):  
Ting Zhang ◽  
Rui Lu ◽  
Yibing Chen ◽  
Yuguo Yuan ◽  
Shaozheng Song ◽  
...  

Abstract Background: Congenital hyper-homocysteinemia (HHcy) is caused by a defective cystathionine β-synthase (CBS) gene, and is frequently associated with dyslipdemia. The aim of this study was to further elucidate the effect of mutated CBS gene on circulating lipids using a rabbit model harboring a homozygous G307S point mutation in CBS. Methods: CRISPR/Cas9 system was used to edit the CBS gene in rabbit embryos. The founder rabbits were sequenced, and their plasma homocysteine (Hcy) and lipid profile were analyzed. Results: Six CBS-knockout (CBS-KO) founder lines with biallelic modifications were obtained. Mutation in CBS caused significant growth retardation and high mortality rates within 6 weeks after birth. In addition, the 6-week old CBS-KO rabbits showed higher plasma levels of Hcy, triglycerides (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) compared to the age-matched wild-type (WT) controls. Histological analysis of the mutants showed accumulation of micro-vesicular cytoplasmic lipid droplets in the hepatocytes. However, gastric infusion of vitamin B and betaine complex significantly decreased the plasma levels of TG, TC and LDL-C in the CBS-KO rabbits, and alleviated hepatic steatosis compared to the untreated animals. Conclusion: A CBSG307S rabbit model was generated that exhibited severe dyslipidemia when fed on a normal diet, indicating that G307S mutation in the CBS gene is a causative factor for dyslipidemia.


2020 ◽  
Author(s):  
Ting Zhang ◽  
Rui Lu ◽  
Yibing Chen ◽  
Yuguo Yuan ◽  
Shaozheng Song ◽  
...  

Abstract Background: Congenital hyper-homocysteinemia (HHcy) is caused by a defective cystathionine β-synthase (CBS) gene, and is frequently associated with dyslipdemia. The aim of this study was to further elucidate the effect of mutated CBS gene on circulating lipids using a rabbit model harboring a homozygous G307S point mutation in CBS.Methods: CRISPR/Cas9 system was used to edit the CBS gene in rabbit embryos. The founder rabbits were sequenced, and their plasma homocysteine (Hcy) and lipid profile were analyzed.Results: Six CBS-knockout (CBS-KO) founder lines with biallelic modifications were obtained. Mutation in CBS caused significant growth retardation and high mortality rates within 6 weeks after birth. In addition, the 6-week old CBS-KO rabbits showed higher plasma levels of Hcy, triglycerides (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) compared to the age-matched wild-type (WT) controls. Histological analysis of the mutants showed accumulation of micro-vesicular cytoplasmic lipid droplets in the hepatocytes. However, gastric infusion of vitamin B and betaine complex significantly decreased the plasma levels of TG, TC and LDL-C in the CBS-KO rabbits, and alleviated hepatic steatosis compared to the untreated animals.Conclusion: A CBSG307S rabbit model was generated that exhibited severe dyslipidemia when fed on a normal diet, indicating that G307S mutation in the CBS gene is a causative factor for dyslipidemia.


2020 ◽  
Author(s):  
Ting Zhang ◽  
Rui Lu ◽  
Yibing Chen ◽  
Yuguo Yuan ◽  
Shaozheng Song ◽  
...  

Abstract Background: Congenital hyper-homocysteinemia (HHcy) is caused by a defective cystathionine β-synthase (CBS) gene, and is frequently associated with dyslipdemia. The aim of this study was to further elucidate the effect of mutated CBS gene on circulating lipids using a rabbit model harboring a homozygous G307S point mutation in CBS.Methods: CRISPR/Cas9 system was used in rabbit embryos to edit their CBS gene. The founder rabbits were sequenced, and their plasma Hcy and lipid profile were analyzed. Results: Six CBS-KO founder lines with biallelic modifications were obtained. Mutation in CBS caused significant growth retardation and high mortality rates within 6 weeks after birth. In addition, the 6-week old CBS-KO rabbits showed higher plasma levels of Hcy, TG, TC and LDL-C compared to the age-matched wild-type (WT) controls. Histological analysis of the mutants showed accumulation of micro-vesicular cytoplasmic lipid droplets in the hepatocytes. However, gastric infusion of vitamin B and betaine complex significantly decreased the plasma levels of TG, TC and LDL-C in the CBS-KO rabbits, as well as hepatic steatosis compared to the untreated animals. Conclusion: We generated CBSG307S rabbit model that exhibited severe dyslipidemia when fed on a normal diet, indicating that G307S mutation in the CBS gene is a causative factor for dyslipidemia.


Zygote ◽  
2020 ◽  
Vol 28 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Babett Bontovics ◽  
Pouneh Maraghechi ◽  
Bence Lázár ◽  
Mahek Anand ◽  
Kinga Németh ◽  
...  

SummaryDual inhibition (2i) of Ras–MEK–ERK and GSK3β pathways enables the derivation of embryo stem cells (ESCs) from refractory mouse strains and, for permissive strains, allows ESC derivation with no external protein factor stimuli involvement. In addition, blocking of ERK signalling in 8-cell-stage mouse embryos leads to ablation of GATA4/6 expression in hypoblasts, suggesting fibroblast growth factor (FGF) dependence of hypoblast formation in the mouse. In human, bovine or porcine embryos, the hypoblast remains unaffected or displays slight-to-moderate reduction in cell number. In this study, we demonstrated that segregation of the hypoblast and the epiblast in rabbit embryos is FGF independent and 2i treatment elicits only a limited reinforcement in favour of OCT4-positive epiblast populations against the GATA4-/6-positive hypoblast population. It has been previously shown that TGFβ/Activin A inhibition overcomes the pervasive differentiation and inhomogeneity of rat iPSCs, rat ESCs and human iPSCs while prompting them to acquire naïve properties. However, TGFβ/Activin A inhibition, alone or together with Rho-associated, coiled-coil containing protein kinase (ROCK) inhibition, was not compatible with the viability of rabbit embryos according to the ultrastructural analysis of preimplantation rabbit embryos by electron microscopy. In rabbit models ovulation upon mating allows the precise timing of progression of the pregnancy. It produces several embryos of the desired stage in one pregnancy and a relatively short gestation period, making the rabbit embryo a suitable model to discover the cellular functions and mechanisms of maintenance of pluripotency in embryonic cells and the embryo-derived stem cells of other mammals.


Author(s):  
E.M. Koloskova ◽  
◽  
V.A. Ezerskii ◽  
T.P. Trubitsina ◽  
◽  
...  

The survival rate of rabbit embryos microinjected by the plasmid form of CRISPR/Cas9 components specific to the sour whey protein gene was evaluated. At high concentrations of plasmid components, embryo survival decreased slightly, possibly because the WAP gene does not belong to the housekeeping genes. After microinjection of a genetic construct with a sequence of green fluorescent protein under a cytomegalovirus promoter, the embryo survival significantly decreased. This is most likely due to the superexpression of GFP at the 2-16 cell stage of development.


2019 ◽  
Vol 86 (11) ◽  
pp. 1758-1770 ◽  
Author(s):  
Guo‐Min Zhang ◽  
Yi‐Xuan Guo ◽  
Ming‐Tian Deng ◽  
Yong‐Jie Wan ◽  
Kai‐Ping Deng ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document