A Criterion Space Branch-and-Cut Algorithm for Mixed Integer Bilinear Maximum Multiplicative Programs

Author(s):  
Vahid Mahmoodian ◽  
Iman Dayarian ◽  
Payman Ghasemi Saghand ◽  
Yu Zhang ◽  
Hadi Charkhgard

This study introduces a branch-and-bound algorithm to solve mixed-integer bilinear maximum multiplicative programs (MIBL-MMPs). This class of optimization problems arises in many applications, such as finding a Nash bargaining solution (Nash social welfare optimization), capacity allocation markets, reliability optimization, etc. The proposed algorithm applies multiobjective optimization principles to solve MIBL-MMPs exploiting a special characteristic in these problems. That is, taking each multiplicative term in the objective function as a dummy objective function, the projection of an optimal solution of MIBL-MMPs is a nondominated point in the space of dummy objectives. Moreover, several enhancements are applied and adjusted to tighten the bounds and improve the performance of the algorithm. The performance of the algorithm is investigated by 400 randomly generated sample instances of MIBL-MMPs. The obtained result is compared against the outputs of the mixed-integer second order cone programming (SOCP) solver in CPLEX and a state-of-the-art algorithm in the literature for this problem. Our analysis on this comparison shows that the proposed algorithm outperforms the fastest existing method, that is, the SOCP solver, by a factor of 6.54 on average. Summary of Contribution: The scope of this paper is defined over a class of mixed-integer programs, the so-called mixed-integer bilinear maximum multiplicative programs (MIBL-MMPs). The importance of MIBL-MMPs is highlighted by the fact that they are encountered in applications, such as Nash bargaining, capacity allocation markets, reliability optimization, etc. The mission of the paper is to introduce a novel and effective criterion space branch-and-cut algorithm to solve MIBL-MMPs by solving a finite number of single-objective mixed-integer linear programs. Starting with an initial set of primal and dual bounds, our proposed approach explores the efficient set of the multiobjective problem counterpart of the MIBL-MMP through a criterion space–based branch-and-cut paradigm and iteratively improves the bounds using a branch-and-bound scheme. The bounds are obtained using novel operations developed based on Chebyshev distance and piecewise McCormick envelopes. An extensive computational study demonstrates the efficacy of the proposed algorithm.

Author(s):  
Thomas Kleinert ◽  
Martine Labbé ◽  
Fränk Plein ◽  
Martin Schmidt

Abstract Linear bilevel optimization problems are often tackled by replacing the linear lower-level problem with its Karush–Kuhn–Tucker conditions. The resulting single-level problem can be solved in a branch-and-bound fashion by branching on the complementarity constraints of the lower-level problem’s optimality conditions. While in mixed-integer single-level optimization branch-and-cut has proven to be a powerful extension of branch-and-bound, in linear bilevel optimization not too many bilevel-tailored valid inequalities exist. In this paper, we briefly review existing cuts for linear bilevel problems and introduce a new valid inequality that exploits the strong duality condition of the lower level. We further discuss strengthened variants of the inequality that can be derived from McCormick envelopes. In a computational study, we show that the new valid inequalities can help to close the optimality gap very effectively on a large test set of linear bilevel instances.


Author(s):  
Arsalan Rahmani ◽  
Majid Yousefikhoshbakht

<p>In this paper, a new branch-and-cut algorithm for mixed integer bi-level programming is proposed. For achieving this purpose, a historical perspective of the development of enumeration methods in the field of bi-level linear programming is considered. Then, we present some obstacles for using branch and bound method based on them, and an algorithm is developed to solve for mixed integer bi-level problem. Finally, we use a preference function to determine the choice of branching and specialized cuts in a branch and cut tree. Computational results are reported and compared favorably to those of previous methods and then implications discussed. The results show that not only the proposed algorithm can find high quality solutions for solving a number of the problems, but also it is competitive with other famous published algorithms.</p>


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1452
Author(s):  
Cristian Mateo Castiblanco-Pérez ◽  
David Esteban Toro-Rodríguez ◽  
Oscar Danilo Montoya ◽  
Diego Armando Giral-Ramírez

In this paper, we propose a new discrete-continuous codification of the Chu–Beasley genetic algorithm to address the optimal placement and sizing problem of the distribution static compensators (D-STATCOM) in electrical distribution grids. The discrete part of the codification determines the nodes where D-STATCOM will be installed. The continuous part of the codification regulates their sizes. The objective function considered in this study is the minimization of the annual operative costs regarding energy losses and installation investments in D-STATCOM. This objective function is subject to the classical power balance constraints and devices’ capabilities. The proposed discrete-continuous version of the genetic algorithm solves the mixed-integer non-linear programming model that the classical power balance generates. Numerical validations in the 33 test feeder with radial and meshed configurations show that the proposed approach effectively minimizes the annual operating costs of the grid. In addition, the GAMS software compares the results of the proposed optimization method, which allows demonstrating its efficiency and robustness.


2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


Sign in / Sign up

Export Citation Format

Share Document