Search Among Queues Under Quality Differentiation

2019 ◽  
Vol 65 (8) ◽  
pp. 3605-3623 ◽  
Author(s):  
Luyi Yang ◽  
Laurens G. Debo ◽  
Varun Gupta

Customers looking for service providers often face search frictions and have to trade off quality and availability. To understand customers’ search behavior when they are confronted with a large collection of vertically differentiated, congested service providers, we build a model in which arriving customers conduct a costly sequential search to resolve uncertainty about service providers’ quality and queue length and select one to join by optimal stopping rules. Customers search, in part, because of variations in waiting time across service providers, which, in turn, is determined by the search behavior of customers. Thus, an equilibrium emerges. We characterize customers’ equilibrium search/join behavior in a mean field model as the number of service providers grows large. We find that reducing either the search cost or customer arrival rate may increase the average waiting time in the system as customers substitute toward high-quality service providers. Moreover, with lower search costs, the improved quality obtained by customers may not make up for the prolonged wait, therefore degrading the average search reward and, more importantly, decreasing customer welfare; when customers search, their welfare can even be lower than if they are not allowed to search at all. This paper was accepted by Gad Allon, operations management.

Author(s):  
Tim Hellemans ◽  
Benny Van Houdt

Mean field models are a popular tool used to analyse load balancing policies. In some exceptional cases the waiting time distribution of the mean field limit has an explicit form. In other cases it can be computed as the solution of a set of differential equations. In this paper we study the limit of the mean waiting time E[Wλ] as the arrival rate λ approaches 1 for a number of load balancing policies in a large-scale system of homogeneous servers which finish work at a constant rate equal to one and exponential job sizes with mean 1 (i.e. when the system gets close to instability). As E[Wλ] diverges to infinity, we scale with -log(1-λ) and present a method to compute the limit limλ-> 1- -E[Wλ]/l(1-λ). We show that this limit has a surprisingly simple form for the load balancing algorithms considered. More specifically, we present a general result that holds for any policy for which the associated differential equation satisfies a list of assumptions. For the well-known LL(d) policy which assigns an incoming job to a server with the least work left among d randomly selected servers these assumptions are trivially verified. For this policy we prove the limit is given by 1/d-1. We further show that the LL(d,K) policy, which assigns batches of K jobs to the K least loaded servers among d randomly selected servers, satisfies the assumptions and the limit is equal to K/d-K. For a policy which applies LL(di) with probability pi, we show that the limit is given by 1/ ∑i pi di - 1. We further indicate that our main result can also be used for load balancers with redundancy or memory. In addition, we propose an alternate scaling -l(pλ) instead of -l(1-λ), where pλ is adapted to the policy at hand, such that limλ-> 1- -E[Wλ]/l(1-λ)=limλ-> 1- -E[Wλ]/l(pλ), where the limit limλ-> 0+ -E[Wλ]/l(pλ) is well defined and non-zero (contrary to limλ-> 0+ -E[Wλ]/l(1-λ)). This allows to obtain relatively flat curves for -E[Wλ]/l(pλ) for λ ∈ [0,1] which indicates that the low and high load limits can be used as an approximation when λ is close to one or zero. Our results rely on the earlier proven ansatz which asserts that for certain load balancing policies the workload distribution of any finite set of queues becomes independent of one another as the number of servers tends to infinity.


2021 ◽  
pp. 1-15
Author(s):  
Yan Qiao ◽  
Lun Ran ◽  
Jinlin Li ◽  
Yunkai Zhai

BACKGROUND: Telemedicine is playing an increasingly more important role in disease diagnosis and treatment. The market of telemedicine application is continuously promoted, thus bringing some issues on telemedicine operations management. OBJECTIVE: We aimed to compare the teleconsultation scheduling performance of newly designed proactive strategy and existing static strategy and explore the decision-making under different conditions. METHODS: We developed a discrete-event simulation model based on practical investigation to describe the existing static scheduling strategy of teleconsultation. The static strategy model was verified by comparing it with the historical data. Then a new proactive strategy was proposed, whose average waiting time, variance of waiting time and completed numbers were compared with the static strategy. RESULTS: The analysis indicated that the proactive strategy performed better than static under the current resource allocation. Furthermore, we explored the impact on the system of both strategies varying arrival rate and experts’ shift time. CONCLUSIONS: Under different shift times and arrival rates, the managers of telemedicine center should select different strategy. The experts’ shift time had a significant impact on all system performance indicators. Therefore, if managers wanted to improve the system performance to a greater extent, they needed to reduce the shift time as much as possible.


2021 ◽  
Vol 48 (3) ◽  
pp. 128-129
Author(s):  
Sounak Kar ◽  
Robin Rehrmann ◽  
Arpan Mukhopadhyay ◽  
Bastian Alt ◽  
Florin Ciucu ◽  
...  

We analyze a data-processing system with n clients producing jobs which are processed in batches by m parallel servers; the system throughput critically depends on the batch size and a corresponding sub-additive speedup function that arises due to overhead amortization. In practice, throughput optimization relies on numerical searches for the optimal batch size which is computationally cumbersome. In this paper, we model this system in terms of a closed queueing network assuming certain forms of service speedup; a standard Markovian analysis yields the optimal throughput in w n4 time. Our main contribution is a mean-field model that has a unique, globally attractive stationary point, derivable in closed form. This point characterizes the asymptotic throughput as a function of the batch size that can be calculated in O(1) time. Numerical settings from a large commercial system reveal that this asymptotic optimum is accurate in practical finite regimes.


2021 ◽  
Author(s):  
Áine Byrne ◽  
James Ross ◽  
Rachel Nicks ◽  
Stephen Coombes

AbstractNeural mass models have been used since the 1970s to model the coarse-grained activity of large populations of neurons. They have proven especially fruitful for understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. Here we consider a simple spiking neuron network model that has recently been shown to admit an exact mean-field description for both synaptic and gap-junction interactions. The mean-field model takes a similar form to a standard neural mass model, with an additional dynamical equation to describe the evolution of within-population synchrony. As well as reviewing the origins of this next generation mass model we discuss its extension to describe an idealised spatially extended planar cortex. To emphasise the usefulness of this model for EEG/MEG modelling we show how it can be used to uncover the role of local gap-junction coupling in shaping large scale synaptic waves.


2014 ◽  
Vol 2014 (1) ◽  
pp. 13D02-0 ◽  
Author(s):  
J. N. Hu ◽  
A. Li ◽  
H. Shen ◽  
H. Toki

2011 ◽  
Vol 20 (08) ◽  
pp. 1663-1675 ◽  
Author(s):  
A. BHAGWAT ◽  
Y. K. GAMBHIR

Systematic investigations of the pairing and two-neutron separation energies which play a crucial role in the evolution of shell structure in nuclei, are carried out within the framework of relativistic mean-field model. The shell closures are found to be robust, as expected, up to the lead region. New shell closures appear in low mass region. In the superheavy region, on the other hand, it is found that the shell closures are not as robust, and they depend on the particular combinations of neutron and proton numbers. Effect of deformation on the shell structure is found to be marginal.


2001 ◽  
Vol 34 (23) ◽  
pp. 8378-8379 ◽  
Author(s):  
M. Hamm ◽  
G. Goldbeck-Wood ◽  
A. V. Zvelindovsky ◽  
G. J. A. Sevink ◽  
J. G. E. M. Fraaije

Sign in / Sign up

Export Citation Format

Share Document