scholarly journals A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs

2017 ◽  
Vol 65 (6) ◽  
pp. 1615-1637 ◽  
Author(s):  
Matteo Fischetti ◽  
Ivana Ljubić ◽  
Michele Monaci ◽  
Markus Sinnl
Author(s):  
Jakob Witzig ◽  
Ambros Gleixner

Two essential ingredients of modern mixed-integer programming solvers are diving heuristics, which simulate a partial depth-first search in a branch-and-bound tree, and conflict analysis, which learns valid constraints from infeasible subproblems. So far, these techniques have mostly been studied independently: primal heuristics for finding high-quality feasible solutions early during the solving process and conflict analysis for fathoming nodes of the search tree and improving the dual bound. In this paper, we pose the question of whether and how the orthogonal goals of proving infeasibility and generating improving solutions can be pursued in a combined manner such that a state-of-the-art solver can benefit. To do so, we integrate both concepts in two different ways. First, we develop a diving heuristic that simultaneously targets the generation of valid conflict constraints from the Farkas dual and the generation of improving solutions. We show that, in the primal, this is equivalent to the optimistic strategy of diving toward the best bound with respect to the objective function. Second, we use information derived from conflict analysis to enhance the search of a diving heuristic akin to classic coefficient diving. In a detailed computational study, both methods are evaluated on the basis of an implementation in the source-open-solver SCIP. The experimental results underline the potential of combining both diving heuristics and conflict analysis. Summary of Contribution. This original article concerns the advancement of exact general-purpose algorithms for solving one of the largest and most prominent problem classes in optimization, mixed-integer linear programs. It demonstrates how methods for conflict analysis that learn from infeasible subproblems can be combined successfully with diving heuristics that aim at finding primal solutions. For two newly designed diving heuristics, this paper features a thoroughly computational study regarding their impact on the overall performance of a state-of-the-art MIP solver.


Author(s):  
Aly-Joy Ulusoy ◽  
Filippo Pecci ◽  
Ivan Stoianov

AbstractThis manuscript investigates the design-for-control (DfC) problem of minimizing pressure induced leakage and maximizing resilience in existing water distribution networks. The problem consists in simultaneously selecting locations for the installation of new valves and/or pipes, and optimizing valve control settings. This results in a challenging optimization problem belonging to the class of non-convex bi-objective mixed-integer non-linear programs (BOMINLP). In this manuscript, we propose and investigate a method to approximate the non-dominated set of the DfC problem with guarantees of global non-dominance. The BOMINLP is first scalarized using the method of $$\epsilon $$ ϵ -constraints. Feasible solutions with global optimality bounds are then computed for the resulting sequence of single-objective mixed-integer non-linear programs, using a tailored spatial branch-and-bound (sBB) method. In particular, we propose an equivalent reformulation of the non-linear resilience objective function to enable the computation of global optimality bounds. We show that our approach returns a set of potentially non-dominated solutions along with guarantees of their non-dominance in the form of a superset of the true non-dominated set of the BOMINLP. Finally, we evaluate the method on two case study networks and show that the tailored sBB method outperforms state-of-the-art global optimization solvers.


Author(s):  
Álinson S. Xavier ◽  
Ricardo Fukasawa ◽  
Laurent Poirrier

When generating multirow intersection cuts for mixed-integer linear optimization problems, an important practical question is deciding which intersection cuts to use. Even when restricted to cuts that are facet defining for the corner relaxation, the number of potential candidates is still very large, especially for instances of large size. In this paper, we introduce a subset of intersection cuts based on the infinity norm that is very small, works for relaxations having arbitrary number of rows and, unlike many subclasses studied in the literature, takes into account the entire data from the simplex tableau. We describe an algorithm for generating these inequalities and run extensive computational experiments in order to evaluate their practical effectiveness in real-world instances. We conclude that this subset of inequalities yields, in terms of gap closure, around 50% of the benefits of using all valid inequalities for the corner relaxation simultaneously, but at a small fraction of the computational cost, and with a very small number of cuts. Summary of Contribution: Cutting planes are one of the most important techniques used by modern mixed-integer linear programming solvers when solving a variety of challenging operations research problems. The paper advances the state of the art on general-purpose multirow intersection cuts by proposing a practical and computationally friendly method to generate them.


Author(s):  
Timo Berthold ◽  
Jakob Witzig

The generalization of mixed integer program (MIP) techniques to deal with nonlinear, potentially nonconvex, constraints has been a fruitful direction of research for computational mixed integer nonlinear programs (MINLPs) in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers toward the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared toward two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality. Summary of Contribution: This original article concerns the advancement of exact general-purpose algorithms for solving one of the largest and most prominent problem classes in optimization, mixed integer nonlinear programs (MINLPs). It demonstrates how methods for conflict analysis that learn from infeasible subproblems can be transferred to nonlinear optimization. Further, it develops theory for how nonlinear dual infeasibility proofs can be derived from a nonlinear relaxation. This paper features a thoroughly computational study regarding the impact of conflict analysis techniques on the overall performance of a state-of-the-art MINLP solver when solving MINLPs to global optimality.


2014 ◽  
Vol 233 (3) ◽  
pp. 459-473 ◽  
Author(s):  
Xiaobo Li ◽  
Karthik Natarajan ◽  
Chung-Piaw Teo ◽  
Zhichao Zheng

Sign in / Sign up

Export Citation Format

Share Document