scholarly journals A Diffusion-Based Analysis of a Multiclass Road Traffic Network

2021 ◽  
Vol 11 (1) ◽  
pp. 60-81 ◽  
Author(s):  
Michel Mandjes ◽  
Jaap Storm

This paper studies a stochastic model that describes the evolution of vehicle densities in a road network. It is consistent with the class of (deterministic) kinematic wave models, which describe traffic flows based on conservation laws that incorporate the macroscopic fundamental diagram (a functional relationship between vehicle density and flow). Our setup is capable of handling multiple types of vehicle densities, with general macroscopic fundamental diagrams, on a network with arbitrary topology. Interpreting our system as a spatial population process, we derive, under natural scaling, fluid, and diffusion limits. More specifically, the vehicle density process can be approximated with a suitable Gaussian process, which yield accurate normal approximations to the joint (in the spatial and temporal sense) vehicle density process. The corresponding means and variances can be computed efficiently. Along the same lines, we develop an approximation to the vehicles’ travel time distribution between any given origin and destination pair. Finally, we present a series of numerical experiments that demonstrate the accuracy of the approximations and illustrate the usefulness of the results.

2021 ◽  
Vol 13 (20) ◽  
pp. 11227
Author(s):  
Piyapong Suwanno ◽  
Rattanaporn Kasemsri ◽  
Kaifeng Duan ◽  
Atsushi Fukuda

Bangkok, Thailand is prone to flooding after heavy rain. Many road sections become impassable, causing severe traffic congestion and greatly impacting activities. Optimal vehicle management requires the knowledge of flooding impact on road traffic conditions in specific areas. A method is proposed to quantify urban flood situations by expressing traffic conditions in specific ranges using the concept of macroscopic fundamental diagram (MFD). MFD-based judgement allows for a road manager to understand the current traffic situation and take appropriate traffic control measures. MFD analysis identified traffic flow–density and density–velocity relationships by using the shape of the estimated MFD travel time-series plots. Then, results were applied to develop a traffic model with vehicle-flow parameters as a measuring method for road-network performance. The developed model improved road-network traffic-flow performance under different flood conditions. A method is also presented for traffic management evaluation on the assumption that flooding occurs.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 57-63 ◽  
Author(s):  
Homayoun Motiee ◽  
Bernard Chocat ◽  
Olivier Blanpain

This paper presents a model for the hydraulic simulation of a drainage network using the storage concept. This model is easier to use than the complete Barre de Saint Venant equations and gives better results than the usual conceptual models, i.e. the Muskingum model, or than models obtained by the simplification of the Saint Venant equations (kinematic wave model and diffusion wave model).


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Chih-Cheng Hsu ◽  
Yu-Chiun Chiou

Previous cellular automata (CA) models have been developed for simulating driver behaviors in response to traffic signal control. However, driver behaviors during traffic signal change intervals, including cross/stop decision and speed adjustment, have not yet been studied. Based on this, this paper aims to propose a change interval CA model for replicating driver’s perception and response to amber light based on stopping probability and speed adjusting functions. The proposed model has been validated by exemplified and field cases. To investigate the applicability of the proposed model, macroscopic and microscopic analyses are conducted. Although the macroscopic fundamental diagram analysis reveals only a small decrease in maximum traffic flow rates with considering driver behaviors in change intervals, in the microscopic analysis, the proposed model can present reasonable vehicular trajectories and deceleration rates during slowdown process.


Sign in / Sign up

Export Citation Format

Share Document