scholarly journals Development of a Software for Assessing Mining Subsidence Susceptibility using GIS Combined with Frequency Ratio, Fuzzy Membership Functions and Analytic Hierarchy Process

Author(s):  
Jangwon Suh ◽  
Yosoon Choi ◽  
Hyeong-Dong Park ◽  
Seungho Lee
2021 ◽  
Vol 10 (9) ◽  
pp. 603
Author(s):  
Sandeep Panchal ◽  
Amit Kr. Shrivastava

Landslide susceptibility maps are very important tools in the planning and management of landslide prone areas. Qualitative and quantitative methods each have their own advantages and dis-advantages in landslide susceptibility mapping. The aim of this study is to compare three models, i.e., frequency ratio (FR), Shannon’s entropy and analytic hierarchy process (AHP) by implementing them for the preparation of landslide susceptibility maps. Shimla, a district in Himachal Pradesh (H.P.), India was chosen for the study. A landslide inventory containing more than 1500 landslide events was prepared using previous literature, available historical data and a field survey. Out of the total number of landslide events, 30% data was used for training and 70% data was used for testing purpose. The frequency ratio, Shannon’s entropy and AHP models were implemented and three landslide susceptibility maps were prepared for the study area. The final landslide susceptibility maps were validated using a receiver operating characteristic (ROC) curve. The frequency ratio (FR) model yielded the highest accuracy, with 0.925 fitted ROC area, while the accuracy achieved by Shannon’s entropy model was 0.883. Analytic hierarchy process (AHP) yielded the lowest accuracy, with 0.732 fitted ROC area. The results of this study can be used by engineers and planners for better management and mitigation of landslides in the study area.


Forecasting ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 36-58 ◽  
Author(s):  
Kinley Tshering ◽  
Phuntsho Thinley ◽  
Mahyat Shafapour Tehrany ◽  
Ugyen Thinley ◽  
Farzin Shabani

Forest fire is an environmental disaster that poses immense threat to public safety, infrastructure, and biodiversity. Therefore, it is essential to have a rapid and robust method to produce reliable forest fire maps, especially in a data-poor country or region. In this study, the knowledge-based qualitative Analytic Hierarchy Process (AHP) and the statistical-based quantitative Frequency Ratio (FR) techniques were utilized to model forest fire-prone areas in the Himalayan Kingdom of Bhutan. Seven forest fire conditioning factors were used: land-use land cover, distance from human settlement, distance from road, distance from international border, aspect, elevation, and slope. The fire-prone maps generated by both models were validated using the Area Under Curve assessment method. The FR-based model yielded a fire-prone map with higher accuracy (87% success rate; 82% prediction rate) than the AHP-based model (71% success rate; 63% prediction rate). However, both the models showed almost similar extent of ‘very high’ prone areas in Bhutan, which corresponded to coniferous-dominated areas, lower elevations, steeper slopes, and areas close to human settlements, roads, and the southern international border. Moderate Resolution Imaging Spectroradiometer (MODIS) fire points were overlaid on the model generated maps to assess their reliability in predicting forest fires. They were found to be not reliable in Bhutan, as most of them overlapped with fire-prone classes, such as ‘moderate’, ‘low’, and ‘very low’. The fire-prone map derived from the FR model will assist Bhutan’s Department of Forests and Park Services to update its current National Forest Fire Management Strategy.


Sign in / Sign up

Export Citation Format

Share Document