Abstract
A new model, integrating information theory, fractal theory and statistical model for accurate landslide susceptibility mapping (LSM) at regional scales, has been proposed. In this model, landslide conditional factors are firstly classified with an optimal number of classes, which is determined by maximizing their information coefficients estimated from Shannon’s entropy model. The spatial association between influencing factors and induced landslides has been measured by introducing the variable fractal dimension method (VFDM). The VFDM approach fully considers the characteristics of landslide fractal distribution. Then the fractal dimensions (\(D\)) are calculated to provide multiple factors with various numerical weights. The proposed model eventually combines the landslide frequency ratio (\(fr\)) of each factor with corresponding weight to achieve spatial prediction of landslides, illustrated by an example area in China. In the study area, 500 landslides have been identified by aerial photograph interpretation, extensive field investigations, historical and bibliographical landslide data. In the model, these landslides are randomly split into a training dataset (70 %)and a validating dataset (30 %) Seven factors are recognized and analyzed by frequency ratio (FR) method, including lithology, distance to fault, altitude, slope, aspect, distance to stream and distance to the road. The receiver operating characteristic curve (AUROC) has been adopted to compare and validate the model results. Results show that the proposed landslide model achieved a more accurate prediction with AUROC equal to 0.8467, over-performing than the conventional frequency ratio method (AUROC=0.8088). According to the final prognostic landslide susceptibility map, 16.37 % f the study area shows very high and high susceptibility, accounting for 63.55 % f the entire landslides. Evaluation of relative factor importance based on a one-by-one factor removal test indicates that the lithology factor contributes unique information for landslides. In conclusion, the example demonstrates that the proposed framework is promising for further improvement of LSM.