A pseudo random number generator based on the chaotic system of Chua's circuit, and its real time FPGA implementation

2013 ◽  
Vol 7 ◽  
pp. 2719-2734 ◽  
Author(s):  
Lahcene Merah ◽  
Adda Ali-Pacha ◽  
Naima Hadj Said ◽  
Mustafa Mamat
2005 ◽  
Vol 72 (1) ◽  
Author(s):  
Massimo Falcioni ◽  
Luigi Palatella ◽  
Simone Pigolotti ◽  
Angelo Vulpiani

Author(s):  
Mangal Deep Gupta ◽  
R. K. Chauhan

This paper introduces an FPGA implementation of a pseudo-random number generator (PRNG) using Chen’s chaotic system. This paper mainly focuses on the development of an efficient VLSI architecture of PRNG in terms of bit rate, area resources, latency, maximum length sequence, and randomness. First, we analyze the dynamic behavior of the chaotic trajectories of Chen’s system and set the parameter’s value to maintain low hardware design complexity. A circuit realization of the proposed PRNG is presented using hardwired shifting, additions, subtractions, and multiplexing schemes. The benefit of this architecture, all the binary multiplications (except [Formula: see text] and [Formula: see text] operations are performed using hardwired shifting. Moreover, the generated sequences pass all the 15 statistical tests of NIST, while it generates pseudo-random numbers at a uniform clock rate with minimum hardware complexity. The proposed architecture of PRNG is realized using Verilog HDL, prototyped on the Virtex-5 FPGA (XC5VLX50T) device, and its analysis has been done using the Matlab tool. Performance analysis confirms that the proposed Chen chaotic attractor-based PRNG scheme is simple, secure, and hardware efficient, with high potential to be adopted in cryptography applications.


2013 ◽  
Vol 16 (2) ◽  
pp. 210-216 ◽  
Author(s):  
Sattar B. Sadkhan ◽  
◽  
Sawsan K. Thamer ◽  
Najwan A. Hassan ◽  
◽  
...  

Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Junxiu Liu ◽  
Zhewei Liang ◽  
Yuling Luo ◽  
Lvchen Cao ◽  
Shunsheng Zhang ◽  
...  

Recent research showed that the chaotic maps are considered as alternative methods for generating pseudo-random numbers, and various approaches have been proposed for the corresponding hardware implementations. In this work, an efficient hardware pseudo-random number generator (PRNG) is proposed, where the one-dimensional logistic map is optimised by using the perturbation operation which effectively reduces the degradation of digital chaos. By employing stochastic computing, a hardware PRNG is designed with relatively low hardware utilisation. The proposed hardware PRNG is implemented by using a Field Programmable Gate Array device. Results show that the chaotic map achieves good security performance by using the perturbation operations and the generated pseudo-random numbers pass the TestU01 test and the NIST SP 800-22 test. Most importantly, it also saves 89% of hardware resources compared to conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document