circuit realization
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 68)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Jiaao Song ◽  
Laszlo B. Kish

Utilizing a formerly published cold resistor circuitry, a secure key exchange system is conceived and explored. A circuit realization of the system is constructed and simulated. Similar to the Pao-Lo key exchanger, this system is secure in the steady-state limit but crackable in the transient situations.


Author(s):  
Murat Koseoglu ◽  
Furkan Nur Deniz ◽  
Baris Baykant Alagoz ◽  
Ali Yuce ◽  
Nusret Tan

Abstract Analog circuit realization of fractional order (FO) elements is a significant step for the industrialization of FO control systems because of enabling a low-cost, electric circuit realization by means of standard industrial electronics components. This study demonstrates an effective operational amplifier-based analog circuit realization of approximate FO integral elements for industrial electronics. To this end, approximate transfer function models of FO integral elements, which are calculated by using Matsuda’s approximation method, are decomposed into the sum of low-pass filter forms according to the partial fraction expansion. Each partial fraction term is implemented by using low-pass filters and amplifier circuits, and these circuits are combined with a summing amplifier to compose the approximate FO integral circuits. Widely used low-cost industrial electronics components, which are LF347N opamps, resistor and capacitor components, are used to achieve a discrete, easy-to-build analog realization of the approximate FO integral elements. The performance of designed circuit is compared with performance of Krishna’s FO circuit design and performance improvements are shown. The study presents design, performance validation and experimental verification of this straightforward approximate FO integral realization method.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Jacques Kengne ◽  
Sandrine Zoulewa Dountsop ◽  
Jean Chamberlain Chedjou ◽  
Khabibullo Nosirov

Symmetry is an important property shared by a large number of nonlinear dynamical systems. Although the study of nonlinear systems with a symmetry property is very well documented, the literature has no sufficient investigation on the important issues concerning the behavior of such systems when their symmetry is broken or altered. In this work, we introduce a novel autonomous 3D system with cyclic symmetry having a piecewise quadratic nonlinearity [Formula: see text] where parameter [Formula: see text] is fixed and parameter [Formula: see text] controls the symmetry and the nonlinearity of the model. Obviously, for [Formula: see text] the system presents both cyclic and inversion symmetries while the inversion symmetry is explicitly broken for [Formula: see text]. We consider in detail the dynamics of the new system for both two regimes of operation by using classical nonlinear analysis tools (e.g. bifurcation diagrams, plots of largest Lyapunov exponents, phase space trajectory plots, etc.). Several nonlinear patterns are reported such as period doubling, periodic windows, parallel bifurcation branches, hysteresis, transient chaos, and the coexistence of multiple attractors of different topologies as well. One of the most gratifying features of the new system introduced in this work is the existence of several parameter ranges for which up to twelve disconnected periodic and chaotic attractors coexist. This latter feature is rarely reported, at least for a simple system like the one discussed in this work. An electronic analog device of the new cyclic system is designed and implemented in PSpice. A very good agreement is observed between PSpice simulation and the theoretical results.


2021 ◽  
Vol 152 ◽  
pp. 111324
Author(s):  
Jieyang Wang ◽  
Jun Mou ◽  
Li Xiong ◽  
Yingqian Zhang ◽  
Yinghong Cao

2021 ◽  
Author(s):  
Hideyuki Miyahara ◽  
Vwani Roychowdhury

Abstract The paradigm of variational quantum classifiers (VQCs) encodes classical information as quantum states, followed by quantum processing and then measurements to generate classical predictions. VQCs are promising candidates for efficient utilizations of noisy intermediate scale quantum (NISQ) devices: classifiers involving M-dimensional datasets can be implemented with only ⌈log2 M⌉ qubits by using an amplitude encoding. A general framework for designing and training VQCs, however, is lacking. An encouraging specific embodiment of VQCs, quantum circuit learning (QCL), utilizes an ansatz: a circuit with a predetermined circuit geometry and parametrized gates expressing a time-evolution unitary operator; training involves learning the gate parameters through a gradient- descent algorithm where the gradients themselves can be efficiently estimated by the quantum circuit. The representational power of QCL, however, depends strongly on the choice of the ansatz, as it limits the range of possible unitary operators that a VQC can search over. Equally importantly, the landscape of the optimization problem may have challenging properties such as barren plateaus and the associated gradient-descent algorithm may not find good local minima. Thus, it is critically important to estimate (i) the price of ansatz; that is, the gap between the performance of QCL and the performance of ansatz-independent VQCs, and (ii) the price of using quantum circuits as classical classifiers: that is, the performance gap between VQCs and equivalent classical classifiers. This paper develops a computational framework to address both these open problems. First, it shows that VQCs, including QCL, fit inside the well-known kernel method. Next it introduces a framework for efficiently designing ansatz-independent VQCs, which we call the unitary kernel method (UKM). The UKM framework enables one to estimate the first known bounds on both the price of anstaz and the price of any speedup advantages of VQCs: numerical results with datatsets of various dimensions, ranging from 4 to 256, show that the ansatz-induced gap can vary between 10−20%, while the VQC-induced gap (between VQC and kernel method) can vary between 10−16%. To further understand the role of ansatz in VQCs, we also propose a method of decomposing a given unitary operator into a quantum circuit, which we call the variational circuit realization (VCR): given any parameterized circuit block (as for example, used in QCL), it finds optimal parameters and the number of layers of the circuit block required to approximate any target unitary operator with a given precision.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5911
Author(s):  
Hsiao-Hsing Chou ◽  
Hsin-Liang Chen

This paper presents a buck converter with a novel constant frequency controlled technique, which employs the proposed frequency detector and adaptive on-time control (AOT) logic to lock the switching frequency. The control scheme, design concept, and circuit realization are presented. In contrast to a complex phase lock loop (PLL), the proposed scheme is easy to implement. With this novel technique, a buck converter is designed to produce an output voltage of 1.0–2.5 V at the input voltage of 3.0–3.6 V and the maximum load current of 500 mA. The proposed scheme was verified using SIMPLIS and MathCAD. The simulation results show that the switching frequency variation is less than 1% at an output voltage of 1.0–2.5 V. Furthermore, the recovery time is less than 2 μs for a step-up and step-down load transient. The circuit will be fabricated using UMC 0.18 μm 1P6M CMOS processes. The control scheme, design concept and circuit realization are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document