New exact solutions for a two-mode KdV equation with higher-order nonlinearity

2018 ◽  
Vol 11 (9) ◽  
pp. 425-431
Author(s):  
Cesar A. Gomez
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yusuf Pandir ◽  
Halime Ulusoy

We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE), we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.


Author(s):  
Supratim Das ◽  
Dibyendu Ghosh

We apply the AKNS hierarchy to derive the generalized KdV equation andthe generalized modified KdV equation with variable-coefficients. We system-atically derive new exact solutions for them. The solutions turn out to beexpressible in terms of doubly-periodic Jacobian elliptic functions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Piotr Rozmej ◽  
Anna Karczewska

New exact solutions to the KdV2 equation (also known as the extended KdV equation) are constructed. The KdV2 equation is a second-order approximation of the set of Boussinesq’s equations for shallow water waves which in first-order approximation yields KdV. The exact solutionsA/2dn2[B(x-vt),m]±m cn[B(x-vt),m]dn[B(x-vt),m]+Din the form of periodic functions found in the paper complement other forms of exact solutions to KdV2 obtained earlier, that is, the solitonic ones and periodic ones given by singlecn2ordn2Jacobi elliptic functions.


Sign in / Sign up

Export Citation Format

Share Document