scholarly journals The M|D|_\infty queue busy cycle distribution

2014 ◽  
Vol 9 ◽  
pp. 81-87
Author(s):  
M. A. M. Ferreira
Keyword(s):  
1973 ◽  
Vol 5 (01) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


1974 ◽  
Vol 11 (04) ◽  
pp. 825-828 ◽  
Author(s):  
D. C. McNickle

In this note an identity due to Arjas (1972) is used to express the distribution of the number of departures from a single server queue in which both service and interarrival times may depend on customer type in terms of the busy period and busy cycle processes.


1973 ◽  
Vol 5 (1) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


1973 ◽  
Vol 5 (01) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


2001 ◽  
Vol 38 (1) ◽  
pp. 255-261 ◽  
Author(s):  
David Perry ◽  
Wolfgang Stadje

We consider a reflected superposition of a Brownian motion and a compound Poisson process as a model for the workload process of a queueing system with two types of customers under heavy traffic. The distributions of the duration of a busy cycle and the maximum workload during a cycle are determined in closed form.


1973 ◽  
Vol 5 (1) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


2012 ◽  
Vol 5 (1) ◽  
pp. 22-25
Author(s):  
Manuel Alberto M. Ferreira ◽  
Marina Andrade

2002 ◽  
Vol 16 (1) ◽  
pp. 19-27 ◽  
Author(s):  
David Perry ◽  
Wolfgang Stadje

We consider a reflected independent superposition of a Brownian motion and a compound Poisson process with positive and negative jumps, which can be interpreted as a model for the content process of a storage system with different types of customers under heavy traffic. The distributions of the duration of a busy cycle and the maximum content during a cycle are determined in closed form.


1996 ◽  
Vol 33 (3) ◽  
pp. 815-829 ◽  
Author(s):  
Liming Liu ◽  
Ding-Hua Shi

Busy period problems in infinite server queues are studied systematically, starting from the batch service time. General relations are given for the lengths of the busy cycle, busy period and idle period, and for the number of customers served in a busy period. These relations show that the idle period is the most difficult while the busy cycle is the simplest of the four random variables. Renewal arguments are used to derive explicit results for both general and special cases.


Sign in / Sign up

Export Citation Format

Share Document