Experimental study and calculation of laterally-prestressed confined concrete columns

2017 ◽  
Vol 23 (5) ◽  
pp. 517-527 ◽  
Author(s):  
Mahdi Nematzadeh ◽  
Saeed Fazli ◽  
Iman Hajirasouliha
2011 ◽  
Vol 94-96 ◽  
pp. 1983-1988
Author(s):  
Jia Song ◽  
Zhen Bao Li ◽  
Yong Ping Xie ◽  
Xiu Li Du ◽  
Yue Gao

An experimental study was made of the mechanical properties of large scale confined concrete subjected to the axial compression test. Eleven tied concrete columns and six plain concrete prisms were tested. In the test, each specimen had the same transverse reinforcement configuration, and similar volumetric ratio of lateral steel, while different size. The test results in this paper indicate that the size of the specimen has no obvious relationship with the ultimate strength, however, it does affect the post-peak ductility to some extent. As a supplement to the experimental study, a finite element method was adopted to imitate the mechanical behavior of the confined concrete under axial compression. The results of the imitation in this paper indicate the confinement mechanism of large scale specimens.


2018 ◽  
Vol 177 ◽  
pp. 287-302 ◽  
Author(s):  
Feng Yu ◽  
Guoshi Xu ◽  
Ditao Niu ◽  
Anchun Cheng ◽  
Ping Wu ◽  
...  

2017 ◽  
Vol 19 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Li-Juan Li ◽  
Lan Zeng ◽  
Shun-De Xu ◽  
Yong-Chang Guo

2012 ◽  
Vol 446-449 ◽  
pp. 3725-3729
Author(s):  
Wei Hua Ma ◽  
Hong Zhen Kang

Compressive tests of 30 concrete column specimens with three concrete strength grades are carried out in this paper to study ultimate compressive strength of specimens. The specimens are divided into three groups, that is, unconfined, confined by CFRP with no initial compression and confined by CFRP with various initial compressions. The different initial compressions’ influence on ultimate stresses and strains are investigated. The decrease of CFRP reinforcing effect due to pre-compression are analyzed. The research results provide experimental datum for reinforced design of existing concrete columns.


2013 ◽  
Vol 405-408 ◽  
pp. 706-709 ◽  
Author(s):  
Yue Ling Long ◽  
Jiang Zhu

Eight concrete columns with various sizes confined by CFRP and four plain concrete columns as the control specimens were axially loaded to failure in order to investigate size effects in concrete columns confined by CFRP. Experimental results show that CFRP can increase considerably both the capacity and ductility of the concrete specimens. Furthermore, the peak stress of the unconfined concrete decreases with the size of the specimens increasing. Similarly, the peak stress of confined concrete decreases with the size of the specimens increasing when the lateral confining stresses are the same. Hence, the size effects should be considered in the stress-strain model of concrete confined by CFRP.


2013 ◽  
Vol 838-841 ◽  
pp. 407-411 ◽  
Author(s):  
Yue Ling Long ◽  
Jiang Zhu

Fourteen concrete columns with various sizes confined by BFRP and hybrid FRP and six plain concrete columns as the control specimens were axially loaded to failure in order to investigate both confining effects and size effects in concrete columns confined by BFRP and hybrid FRP. Experimental results show that BFRP and hybrid FRP can increase considerably both the capacity and ductility of the concrete specimens. Furthermore, the peak stress of the unconfined concrete decreases with the size of the specimens increasing. Similarly, the peak stress of BFRP confined concrete decreases with the size of the specimens increasing when the lateral confining stresses are the same. Hence, both confining effect and size effects should be considered carefully in the stress-strain model of concrete confined by BFRP. In addition, both strength and ductility of concrete confined by hybrid FRP in case of CFRP as inner layers and BFRP as outward layers are better than those in case of BFRP as inner layers and CFRP as outward layers.


Sign in / Sign up

Export Citation Format

Share Document