connection system
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 101)

H-INDEX

13
(FIVE YEARS 3)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 530
Author(s):  
Woei-Jiunn Tsaur ◽  
Jen-Chun Chang ◽  
Chin-Ling Chen

Internet of Things (IoT) device security is one of the crucial topics in the field of information security. IoT devices are often protected securely through firmware update. Traditional update methods have their shortcomings, such as bandwidth limitation and being attackers’ easy targets. Although many scholars proposed a variety of methods that are based on the blockchain technology to update the firmware, there are still demerits existing in their schemes, including large storage space and centralized stored firmware. In summary, this research proposes a highly secure and efficient protection mechanism that is based on the blockchain technology to improve the above disadvantages. Therefore, this study can reduce the need of storage space and improve system security. The proposed system has good performance in some events, including firmware integrity, security of IoT device connection, system security, and device anonymity. Furthermore, we confirm the high security and practical feasibility of the proposed system by comparing with the existing methods.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jinhe Gao ◽  
Jiahuan Xi ◽  
Yuwen Xu ◽  
Baokui Chen ◽  
Dan Zhao ◽  
...  

To avoid brittle fracture and plastic yielding of steel beam-to-column connections under earthquakes, a new beam-to-column connection of steel structures with all-steel buckling restrained braces (BRBs) is proposed. The all-steel BRB is connected to the steel beam and column members through pins to form a new connection system. Taking the T-shaped beam-to-column connection steel structure as the research object, two structural types with an all-steel BRB installed on one side (S-type) and two sides (D-type) are considered. Theoretical equations of the connection system’s initial stiffness and yield load are derived through the mechanical models. The yield load, main strain distribution, energy dissipation, and stiffness of the connection system are investigated through quasi-static tests to verify the connection system’s seismic performance. The tests revealed that the proposed new connection system is capable of achieving a stable hysteresis behavior. At the end of loading, the beam and column members are not damaged, and the plastic deformation is concentrated in the plastic energy dissipating replaceable BRB, and the beam and column basically remain elastic. The proposed equations approximately estimated the load response of the proposed connection system. The results show that the damage mode of this new connection system under seismic loading is BRB yielding, with an elastic response from the beam-column members.


Author(s):  
Yong Fang ◽  
Wenli Zhang ◽  
Hua Hu ◽  
Jiayi Zhou ◽  
Dianliang Xiao ◽  
...  

The aim of this study was to meet the visual cognition needs of the elderly population for the guidance marks and safety guidance marks of the rail transit connection system. Based on the visual characteristics of the elderly population, this paper firstly determined the visual field and sight range of the marks of the elderly population from three aspects—visual angle, visual distance, and height of the elderly population—and constructed the visual recognition space of the elderly population. Then, from the perspective of the setting position, the setting height, and the deflection angle, an adaptive aging safety design method for the guidance marks in the rail transit connection system is proposed. Then, based on the eye movement data of fixation duration, initial fixation duration, and the number of visits, a visual behavior index model is constructed to iteratively optimize the adaptive aging safety design of guidance marks in a rail transit connection system. A radar map is used to calculate the comprehensive index of visual behavior to determine the optimal scheme. Finally, taking the traffic connection system of Shanghai Songjiang University Town Station as an example, the eye movement data of 37 participants were collected, according to the principle that each connection path should only be taken once per person; the above method was used to design 7 connection path guidance marks for an adaptive aging safety design. The results showed that the comprehensive index of visual behavior of different paths had different degrees of improvement of up to 14.00%, which verified the effectiveness of the design method. The research results have certain theoretical significance and application value for the adaptive aging safety design and retrofit of guidance marks of rail transit connection systems.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Virginio Quaglini ◽  
Carlo Pettorruso ◽  
Eleonora Bruschi ◽  
Luca Mari

Past earthquakes have highlighted the seismic vulnerability of prefabricated industrial sheds typical of past Italian building practices. Such buildings typically exhibited rigid collapse mechanisms due to the absence of rigid links between columns, beams, and roof elements. This study aims at presenting the experimental and numerical assessment of a novel dissipative connection system (DCS) designed to improve the seismic performance of prefabricated sheds. The device, which is placed on the top of columns, exploits the movement of a rigid slider on a sloped surface to dissipate seismic energy and control the lateral displacement of the beam, and to provide a recentering effect at the end of the earthquake. The backbone curve of the DCS, and the effect of vertical load, sliding velocity, and number of cycles were assessed in experimental tests conducted on a scaled prototype, according to a test protocol designed accounting for similarity requirements. In the second part of the study, non-linear dynamic analyses were performed on a finite element model of a portal frame implementing, at beam-column joints, either the DCS or a pure friction connection. The results highlighted the effectiveness of the DCS in controlling beam-to-column displacements, reducing shear forces on the top of columns, and limiting residual displacements that can accrue during ground motion sequences.


2021 ◽  
Author(s):  
◽  
Gabriella Joyce

<p>In a climate where standard methods of construction are being challenged, developments in engineered timbers are allowing mass timber construction to be explored as a sustainable alternative to traditional building methods. Cross- laminated timber (CLT) is at the forefront of this evolution and, with the advancement in computational design and digital fabrication tools, there lies an opportunity to redefine standard construction. This project explores how digital modelling and advance digital fabrication can be combined to generate a connection system for CLT panels.  The advantages of CLT and mass timber construction are numerous and range from environmental and aesthetic benefits to site safety and cost reduction benefits. There are, however, issues that remain surrounding the connections between CLT panels. Steurer (2006, p.136) stated that, “Progress in engineered timber construction is directly related to developments in connector technology.” This thesis creates connections inspired by traditional Japanese joinery that have been adapted to be used for the panel construction of CLT structures. Using CLT offcuts as a primary connection material, the system not only reduces waste but also mitigates thermal bridging and lowers the number of connection points whilst increasing the ease of building and fabrication.  The connections are first considered at a detail scale. They use the literature review and case studies as a base for design before being tested using digitally fabricated prototypes. These prototypes are evaluated against a framework created in line with the aforementioned criteria. Within this framework, the connections are analysed against existing connection systems as well as previous designs to establish a successful system. The connections are then evaluated within the context of a building scale and considers large-scale fabrication and on- site assembly whilst continuing to focus on the reduction of waste. This research found that the simplicity of the connections is key to a successful system as this allows for faster and cheaper fabrication and installation. However, there is still further research needed surrounding large-scale fabrication and the structural capacity of timber connection systems.</p>


2021 ◽  
Author(s):  
◽  
Gabriella Joyce

<p>In a climate where standard methods of construction are being challenged, developments in engineered timbers are allowing mass timber construction to be explored as a sustainable alternative to traditional building methods. Cross- laminated timber (CLT) is at the forefront of this evolution and, with the advancement in computational design and digital fabrication tools, there lies an opportunity to redefine standard construction. This project explores how digital modelling and advance digital fabrication can be combined to generate a connection system for CLT panels.  The advantages of CLT and mass timber construction are numerous and range from environmental and aesthetic benefits to site safety and cost reduction benefits. There are, however, issues that remain surrounding the connections between CLT panels. Steurer (2006, p.136) stated that, “Progress in engineered timber construction is directly related to developments in connector technology.” This thesis creates connections inspired by traditional Japanese joinery that have been adapted to be used for the panel construction of CLT structures. Using CLT offcuts as a primary connection material, the system not only reduces waste but also mitigates thermal bridging and lowers the number of connection points whilst increasing the ease of building and fabrication.  The connections are first considered at a detail scale. They use the literature review and case studies as a base for design before being tested using digitally fabricated prototypes. These prototypes are evaluated against a framework created in line with the aforementioned criteria. Within this framework, the connections are analysed against existing connection systems as well as previous designs to establish a successful system. The connections are then evaluated within the context of a building scale and considers large-scale fabrication and on- site assembly whilst continuing to focus on the reduction of waste. This research found that the simplicity of the connections is key to a successful system as this allows for faster and cheaper fabrication and installation. However, there is still further research needed surrounding large-scale fabrication and the structural capacity of timber connection systems.</p>


2021 ◽  
Vol 11 (23) ◽  
pp. 11118
Author(s):  
Rozin Badeel ◽  
Shamala K. Subramaniam ◽  
Zurina Mohd Hanapi ◽  
Abdullah Muhammed

This paper extensively reviews and analyses Light Fidelity (LiFi), a new technology that uses light to transmit data as a high-speed wireless connection system from a wide spectrum of domains. An in-depth analysis and classifications of pertinent research areas for LiFi networks are presented in this paper. The various aspects constituting this paper include a detailed literature review, proposed classifications, and statistics, which further is deliberated to encompass applications, system architecture, system components, advantages, and disadvantages. LiFi and other technologies are compared, multi-user access techniques used in LiFi networks are investigated and open issues are addressed in detail. The paper is concluded with a comprehensive taxonomy of literature comparison that has served as the basis of the proposed open issues and research trends.


2021 ◽  
Vol 247 ◽  
pp. 113165
Author(s):  
David Martins ◽  
José Gonilha ◽  
João R. Correia ◽  
Nuno Silvestre

Sign in / Sign up

Export Citation Format

Share Document