Structural damage detection based on Chaotic Artificial Bee Colony algorithm

2015 ◽  
Vol 55 (6) ◽  
pp. 1223-1239 ◽  
Author(s):  
H.J. Xu ◽  
Z.H. Ding ◽  
Z.R. Lu ◽  
J.K. Liu
2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Yinghao Zhao ◽  
Quansheng Yan ◽  
Zheng Yang ◽  
Xiaolin Yu ◽  
Buyu Jia

A novel artificial bee colony (ABC) algorithm to detect structural damage via modal and frequency analyses is proposed (named as TCABC algorithm). Compared to the standard ABC algorithm, tabu search method and chaotic search method are adopted in the proposed algorithm to enhance the exploration and exploitation ability. The tabu search method uses a memory function to avoid the solution being trapped in a local minimum, which increases the exploitation ability. Chaotic search method generates more searching points for finding the global minimum, which increases the exploration ability. Additionally, the first roulette wheel selection is replaced by the tournament selection to enhance the global searching ability of the TCABC algorithm. Several explicit test functions and an implicit damage detection function are employed to check the numerical results obtained from ABC and TCABC algorithms. Afterward, the damage detection accuracy of the TCABC algorithm is verified under different circumstances, and several recommendations are given for using the TCABC algorithm to detect structural damages under actual conditions. Finally, an experimental study is applied to examine the performance of TCABC algorithm for damage detection. The results show the following: (1) compared to traditional ABC algorithm, TCABC algorithm performs better; (2) fewer groups lead to faster convergence as demonstrated by both algorithms used in the same damage situation; (3) TCABC algorithm can infer the locations and extents of the damage when the groupings are inaccurate; (4) the accuracy of the field test data profoundly affects the precision of the damage detection results. In other words, stronger noises result in worse identification results; (5) whether or not the noises exist, the more data are measured, the more accurate the results can be achieved; (6) the TCABC algorithm can efficiently detect structural damage in the experimental study.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1384-1395
Author(s):  
Rakaa T. Kamil ◽  
Mohamed J. Mohamed ◽  
Bashra K. Oleiwi

A modified version of the artificial Bee Colony Algorithm (ABC) was suggested namely Adaptive Dimension Limit- Artificial Bee Colony Algorithm (ADL-ABC). To determine the optimum global path for mobile robot that satisfies the chosen criteria for shortest distance and collision–free with circular shaped static obstacles on robot environment. The cubic polynomial connects the start point to the end point through three via points used, so the generated paths are smooth and achievable by the robot. Two case studies (or scenarios) are presented in this task and comparative research (or study) is adopted between two algorithm’s results in order to evaluate the performance of the suggested algorithm. The results of the simulation showed that modified parameter (dynamic control limit) is avoiding static number of limit which excludes unnecessary Iteration, so it can find solution with minimum number of iterations and less computational time. From tables of result if there is an equal distance along the path such as in case A (14.490, 14.459) unit, there will be a reduction in time approximately to halve at percentage 5%.


Sign in / Sign up

Export Citation Format

Share Document