modal data
Recently Published Documents


TOTAL DOCUMENTS

521
(FIVE YEARS 178)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Chao Tang ◽  
Anyang Tong ◽  
Aihua Zheng ◽  
Hua Peng ◽  
Wei Li

The traditional human action recognition (HAR) method is based on RGB video. Recently, with the introduction of Microsoft Kinect and other consumer class depth cameras, HAR based on RGB-D (RGB-Depth) has drawn increasing attention from scholars and industry. Compared with the traditional method, the HAR based on RGB-D has high accuracy and strong robustness. In this paper, using a selective ensemble support vector machine to fuse multimodal features for human action recognition is proposed. The algorithm combines the improved HOG feature-based RGB modal data, the depth motion map-based local binary pattern features (DMM-LBP), and the hybrid joint features (HJF)-based joints modal data. Concomitantly, a frame-based selective ensemble support vector machine classification model (SESVM) is proposed, which effectively integrates the selective ensemble strategy with the selection of SVM base classifiers, thus increasing the differences between the base classifiers. The experimental results have demonstrated that the proposed method is simple, fast, and efficient on public datasets in comparison with other action recognition algorithms.


2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Zhuqing Jiao ◽  
Siwei Chen ◽  
Haifeng Shi ◽  
Jia Xu

Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer’s disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD.


2021 ◽  
Vol 12 (6) ◽  
pp. 1-20
Author(s):  
Jiaqi Zhao ◽  
Yong Zhou ◽  
Boyu Shi ◽  
Jingsong Yang ◽  
Di Zhang ◽  
...  

With the rapid development of sensor technology, lots of remote sensing data have been collected. It effectively obtains good semantic segmentation performance by extracting feature maps based on multi-modal remote sensing images since extra modal data provides more information. How to make full use of multi-model remote sensing data for semantic segmentation is challenging. Toward this end, we propose a new network called Multi-Stage Fusion and Multi-Source Attention Network ((MS) 2 -Net) for multi-modal remote sensing data segmentation. The multi-stage fusion module fuses complementary information after calibrating the deviation information by filtering the noise from the multi-modal data. Besides, similar feature points are aggregated by the proposed multi-source attention for enhancing the discriminability of features with different modalities. The proposed model is evaluated on publicly available multi-modal remote sensing data sets, and results demonstrate the effectiveness of the proposed method.


2021 ◽  
pp. 147592172110523
Author(s):  
Obukho E Esu ◽  
Ying Wang ◽  
Marios K Chryssanthopoulos

As structural systems approach their end of service life, integrity assessment and condition monitoring during late life becomes necessary in order to identify damage due to age-related issues such as corrosion and fatigue and hence prevent failure. In this paper, a novel method of level 3 damage identification (i.e. detection, localisation and quantification) from local vibration mode pair (LVMP) frequencies is introduced. Detection is achieved by observation of LVMP frequencies within any of the vibration modes investigated while the location of the damage is predicted based on the ranking order of the LVMP frequency ratios and the damage is quantified in terms of material volume loss from pre-established quantification relations. The proposed method which is baseline-free (in the sense that it does not require vibration-based assessment or modal data from the undamaged state of the pipe) and solely frequency-dependent was found to be more than 90% accurate in detecting, locating and quantifying damage through a numerical verification study. It was also successfully assessed using experimental modal data obtained from laboratory tests performed on an aluminium pipe with artificially inflicted corrosion-like damage underscoring a novel concept in vibration-based damage identification for pipes.


Author(s):  
Yinhuan ZHANG ◽  
Qinkun XIAO ◽  
Chaoqin CHU ◽  
Heng XING

The multi-modal data fusion method based on IA-net and CHMM technical proposed is designed to solve the problem that the incompleteness of target behavior information in complex family environment leads to the low accuracy of human behavior recognition.The two improved neural networks(STA-ResNet50、STA-GoogleNet)are combined with LSTM to form two IA-Nets respectively to extract RGB and skeleton modal behavior features in video. The two modal feature sequences are input CHMM to construct the probability fusion model of multi-modal behavior recognition.The experimental results show that the human behavior recognition model proposed in this paper has higher accuracy than the previous fusion methods on HMDB51 and UCF101 datasets. New contributions: attention mechanism is introduced to improve the efficiency of video target feature extraction and utilization. A skeleton based feature extraction framework is proposed, which can be used for human behavior recognition in complex environment. In the field of human behavior recognition, probability theory and neural network are cleverly combined and applied, which provides a new method for multi-modal information fusion.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kang Liu ◽  
Xin Gao

The use of multimodal sensors for lane line segmentation has become a growing trend. To achieve robust multimodal fusion, we introduced a new multimodal fusion method and proved its effectiveness in an improved fusion network. Specifically, a multiscale fusion module is proposed to extract effective features from data of different modalities, and a channel attention module is used to adaptively calculate the contribution of the fused feature channels. We verified the effect of multimodal fusion on the KITTI benchmark dataset and A2D2 dataset and proved the effectiveness of the proposed method on the enhanced KITTI dataset. Our method achieves robust lane line segmentation, which is 4.53% higher than the direct fusion on the precision index, and obtains the highest F2 score of 79.72%. We believe that our method introduces an optimization idea of modal data structure level for multimodal fusion.


Sign in / Sign up

Export Citation Format

Share Document