scholarly journals Error calibration of five-axis machine tools by on-machine measurement system using a laser displacement sensor

2014 ◽  
Vol 8 (4) ◽  
pp. JAMDSM0053-JAMDSM0053 ◽  
Author(s):  
Yuu NAGAI ◽  
Soichi IBARAKI ◽  
Shizuo NISHIKAWA
Author(s):  
Soichi Ibaraki ◽  
Cefu Hong

The R-test is a new instrument to measure three-dimensional displacement of a precision sphere attached to a spindle relative to a work table by using three displacement sensors. Its application to error calibration for five-axis machine tools has been studied in both academia and industry. For the simplicity in calculating the sphere center displacement, all conventional R-test devices use contact-type displacement sensors with a flat-ended probe. Conventional contact-type R-test may be potentially subject to the influence of the friction or the dynamics of supporting spring in displacement sensors particularly in dynamic measurement. This paper proposes a non-contact R-test with laser displacement sensors. A new algorithm was proposed to estimate the three-dimensional displacement of sphere center by using laser displacement sensors, It compensates the measurement uncertainty caused by the inclination of the target surface. Experimental case studies are presented to evaluate its measurement performance by comparing with the conventional contact-type R-test device.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Zhanxi Wang ◽  
Jing Bai ◽  
Xiaoyu Zhang ◽  
Xiansheng Qin ◽  
Xiaoqun Tan ◽  
...  

This paper expounds the principle and method of calibration and base detection by using the visual measurement system for detection and correction of installation error between workpiece and the robot drilling system. This includes the use of Cognex Insight 5403 high precision industrial camera, a light source, and the KEYENCE coaxial IL-300 laser displacement sensor. The three-base holes method and two-base holes method are proposed to analyze the transfer relation between the basic coordinate system of the actual hole drilling robot and the basic coordinate system of the theoretical hole drilling robot. The corresponding vision coordinates calibration and the base detection experiments are examined and the data indicate that the result of base detection is close to the correct value.


2014 ◽  
Vol 8 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Soichi Ibaraki ◽  
◽  
Yusuke Ota

This paper presents a scheme to calibrate the error map of the rotary axes of a five-axis machine tool. This is done by means of on-the-machine measurement of a test piece using a contact-type touch-trigger probe. The present probing-based approach is more suitable for efficient and automated “self-calibration,” than conventional calibration schemes, such as ball bar tests or R-test. It is thus advantageous in the application to periodic checking of the error map, or periodic updating of its numerical compensation. In the present approach, a test piece of arbitrary geometry, e.g. a raw unmachined workpiece, can be used as the probing target. An experimental demonstration is presented.


2015 ◽  
Vol 9 (4) ◽  
pp. 387-395 ◽  
Author(s):  
Soichi Ibaraki ◽  
◽  
Yu Nagai ◽  
Hisashi Otsubo ◽  
Yasutaka Sakai ◽  
...  

The R-test measures the three-dimensional displacement of a precision sphere, attached to a machine spindle, by using three displacement sensors fixed to the machine’s table. Its application to error calibration for five-axis machine tools has long been studied. This paper presents software for analyzing the measured R-test trajectories for error diagnosis and numerical compensation for rotary axis location errors and error motions. The developed software first graphically presents the measured R-test trajectories to help a user intuitively understand error motions of the rotary axes. It also numerically parameterizes the rotary axis geometric error parameters, and then generates a compensation table that can be implemented in some latest-generation commercial CNC systems. An actual demonstration of its application to a five-axis machine tool with a universal head (two rotary axes on the spindle side) is presented.


Sign in / Sign up

Export Citation Format

Share Document