scholarly journals Optimum Design of Thrust Air Bearing for Hard Disk Drive Spindle Motor

2010 ◽  
Vol 4 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Mohd Danial IBRAHIM ◽  
Tadashi NAMBA ◽  
Masayuki OCHIAI ◽  
Hiromu HASHIMOTO
2011 ◽  
Vol 77 (773) ◽  
pp. 234-245
Author(s):  
Mohd Danial IBRAHIM ◽  
Tadashi NAMBA ◽  
Masayuki OCHIAI ◽  
Hiromu HASHIMOTO

Author(s):  
Yasuhisa Hattori ◽  
Hiromu Hashimoto ◽  
Masayuki Ochiai

Abstract The aim of this paper is to develop the general methodology for the optimum design of magnetic head slider for improving the spacing characteristics between head slider and disk surfaces under the static and dynamic operation conditions of hard disk drive and to present an application of the methodology to IBM 3380-type slider design. In the optimum design, the objective function is defined as the weighted sum of minimum spacing, maximum difference of spacing due to variation of radial location of head and maximum amplitude ratio of slider motion. Slider rail width, taper length, taper angle, suspension position and preload are selected as the design variables. Before the optimization of magnetic head slider, the effects of these five design variables on the objective function are examined by the parametric study, and then the optimum design variables are determined by applying the hybrid optimization technique combining the direct search method and the successive quadratic programming (SQP). From the results obtained, the effectiveness of optimum design on the spacing characteristics of magnetic head slider is clarified.


Author(s):  
Eric M. Jayson ◽  
Frank E. Talke

Hard disk drives must be designed to withstand shock during operation. Large movements of the slider during shock impulse can cause reading and writing errors, track misregistration, or in extreme cases, damage to the magnetic material and loss of data. The design of the air bearing contour determines the steady state flying conditions of the slider as well as dynamic flying conditions, including shock response. In this paper a finite element model of the hard disk drive mechanical components was developed to determine the time dependent forces and moments applied to the slider during a shock event. The time dependent forces and moments are applied as external loads in a solution of the dynamic Reynolds equation to determine the slider response to a shock event. The genetic algorithm was then used to optimize the air bearing contour for optimum shock response while keeping the steady flying conditions constant. The results show substantial differences in the spacing modulation of the head/disk interface after a shock as a function of the design of the air bearing contour.


Sign in / Sign up

Export Citation Format

Share Document