air bearing
Recently Published Documents


TOTAL DOCUMENTS

961
(FIVE YEARS 79)

H-INDEX

31
(FIVE YEARS 4)

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 872
Author(s):  
Jianzhou Du ◽  
Duomei Ai ◽  
Xin Xiao ◽  
Jiming Song ◽  
Yunping Li ◽  
...  

Air bearing has been widely applied in ultra-precision machine tools, aerospace and other fields. The restrictor of the porous material is the key component in air bearings, but its performance is limited by the machining accuracy. A combination of optimization design and material modification of the porous alumina ceramic membrane is proposed to improve performance within an air bearing. Porous alumina ceramics were prepared by adding a pore-forming agent and performing solid-phase sintering at 1600 °C for 3 h, using 95-Al2O3 as raw material and polystyrene microspheres with different particle sizes as the pore-forming agent. With 20 wt.% of PS50, the optimum porous alumina ceramic membranes achieved a density of 3.2 g/cm3, a porosity of 11.8% and a bending strength of 150.4 MPa. Then, the sintered samples were processed into restrictors with a diameter of 40 mm and a thickness of 5 mm. After the restrictors were bonded to aluminum shells for the air bearing, both experimental and simulation work was carried out to verify the designed air bearing. Simulation results showed that the load capacity increased from 94 N to 523 N when the porosity increased from 5% to 25% at a fixed gas supply pressure of 0.5 MPa and a fixed gas film thickness of 25 μm. When the gas film thickness and porosity were fixed at 100 μm and 11.8%, respectively, the load capacity increased from 8.6 N to 40.8 N with the gas supply pressure having been increased from 0.1 MPa to 0.5 MPa. Both experimental and simulation results successfully demonstrated the stability and effectiveness of the proposed method. The porosity is an important factor for improving the performance of an air bearing, and it can be optimized to enhance the bearing’s stability and load capacity.


Author(s):  
Harry Septanto ◽  
Farohaji Kurniawan ◽  
Bambang Setiadi ◽  
Edi Kurniawan ◽  
Djoko Suprijanto

2021 ◽  
Vol 2095 (1) ◽  
pp. 012083
Author(s):  
Zhanxin Li ◽  
Zizhen Cao ◽  
Wenjie Duan ◽  
Yikang Du ◽  
Haiteng Liu

Abstract The most important interfering torque of a three-axis air-bearing simulator is the displacement of the center of mass in the gravity field caused by structural elasticity. In order to characterize the torque, a mathematical model of the interference moment was established. Based on the model, it is suggested that the vertical stiffness and horizontal stiffness of the structure should be equal as far as possible during the structural design, and the elastic unbalance moment can be compensated by the vertical offset of the center of mass of the air floating platform relative to the rotation center after the initial attitude leveling. ABAQUS was used to build a simulation model of the air floating platform, and the changes of the structure’s centroid before and after the gravitational field was applied were extracted by software to simulate the centroid deviation caused by the elastic deformation of the structure, which was used as the characterization to conduct discrete optimization of the structure. The optimal structural parameters were obtained. Then the disturbance torque curve and the corresponding initial centroid offset after initial centroid compensation were calculated by mathematical model. The results are of positive guiding significance to the design of three-axis air-bearing simulator.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 178
Author(s):  
Fabian Walter ◽  
Michael Sinapius

The dry lubricated bump-type foil air bearing enables a carrying load capacity due to a pressure build up in a convergent air film. Since the air bearing provides low power dissipation above the lift-off speed and the flexible foil provides an adaptivity against high temperatures, manufacturing errors or rotor growth, the bump-type foil air bearing is in particular suitable for high speed rotating machineries. The corresponding dynamic behavior depends on the operational parameters, the behavior of the flexible foil structure, and in particular on the circumferential clearance. In order to avoid or suppress the critical subsynchronous motion at high rotational speeds, many researchers recommend adding an aerodynamic preload to the bore shape, representing a transition from a circular to a lobed bearing bore shape. In addition to positive effects on the stability, preliminary studies demonstrated degrading effects on the stiffness and damping due to increasing preload values. This observation leads to the assumption, that the preload value meets an optimum with respect to stability, load-capacity, and lift-off speed. With the aim of deriving an appropriate lobe configuration for the design of the bump-type foil air bearing, this work performs comprehensive numerical investigations on the dynamic performance and the stability characteristic as a function of preload and minimum clearance. To this end, this work uses steady-state and transient stability analysis methods to recommend optimal aeroydnamic preload values with respect to the corresponding minimum clearance.


2021 ◽  
Vol 11 (16) ◽  
pp. 7588
Author(s):  
Rico Hooijschuur ◽  
Niranjan Saikumar ◽  
S. Hassan HosseinNia ◽  
Ron A. J. van Ostayen

This paper presents the development of a contactless sensing system and the dynamic evaluation of an air-bearing-based precision wafer positioning system. The contactless positioning stage is a response to the trend seen in the high-tech industry, where the substrates are becoming thinner and larger to reduce the cost and increase the yield. Using contactless handling it is possible to avoid damage and contamination. The system works by floating the substrate on a thin film of air. A viscous traction force is created on the substrate by steering the airflow. A cascaded control design structure has been implemented on the contactless positioning system, where the inner loop controller (ILC) controls the actuator which steers the airflow and the outer loop controller (OLC) controls the position of the substrate by controlling the reference of the ILC. The dynamics of the ILC are evaluated and optimized for the performance of the positioning of the substrate. The vibration disturbances are also handled by the ILC. The bandwidth of the system has been improved to 300 Hz. For the OLC, a linear charge-coupled device has been implemented as a contactless sensor. The performance of the sensing system has been analysed. During control in steady-state, this resulted in a position error of the substrate of 12.9 μm RMS, which is a little more than two times the resolution. The bandwidth of the OLC is approaching 10 Hz.


Author(s):  
Lei Cao ◽  
Guo-Ping Liu ◽  
Wenshan Hu ◽  
Jahan Zaib Bhatti

The Android-based networked control system laboratory (NCSLab) is a remote control laboratory that adopts an extensible architecture, mainly including Android mobile devices, MATLAB servers, controllers and test rigs. In order to conduct various simulations and experiments more effectively in NCSLab, the first key issue that needs to be solved is to enable users to design their own control algorithms or functional blocks on the Android client, rather than just using the basic block libraries provided by the system. So, this paper proposes and implements a scheme for Android-based compilation of C-MEX S-functions. With this new feature, users can design personalized algorithm according to their requirements in the form of S-functions, which can be called and executed after being compiled by MATLAB server. Finally, through the experiment validation of the three-degree-of-freedom air bearing spacecraft platform, it is proved that the method of Android-based C-MEX S-functions is reliable and efficient, and this scheme well enhances the functionality and mobility of Android-based NCSLab.


Sign in / Sign up

Export Citation Format

Share Document