scholarly journals Oxidation Damage Evaluation by Non-Destructive Method for Graphite Components in High Temperature Gas-Cooled Reactor

2008 ◽  
Vol 2 (1) ◽  
pp. 166-175 ◽  
Author(s):  
Taiju SHIBATA ◽  
Tatsuya TADA ◽  
Junya SUMITA ◽  
Kazuhiro SAWA
Author(s):  
Chang H. Oh ◽  
Eung S. Kim

An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR) safety. Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen depending on the accident scenario and the design. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (6) preventing fluid density gradient; (7) preventing fluid temperature gradient; (7) preventing high temperature. Based on the basic concepts listed above, various air-ingress mitigation methods are proposed in this study. Among them, the following one mitigation idea was extensively investigated using computational fluid dynamic codes (CFD) in terms of helium injection in the lower plenum. The main idea of the helium injection method is to replace air in the core and the lower plenum upper part by buoyancy force. This method reduces graphite oxidation damage in the severe locations of the reactor inside. To validate this method, CFD simulations are addressed here. A simple 2-D CFD model was developed based on the GT-MHR 600MWt as a reference design. The simulation results showed that the helium replaces the air flow into the core and significantly reduces the air concentration in the core and bottom reflector potentially protecting oxidation damage. According to the simulation results, even small helium flow was sufficient to remove air in the core, mitigating the air-ingress successfully.


Author(s):  
Karl N. Fleming ◽  
John Fletcher ◽  
Neil Broom ◽  
Ron Gamble ◽  
Steve Gosselin

The purpose of this paper is to present the results of a study to establish strategies for the reliability and integrity management (RIM) of passive metallic components for the PBMR. The RIM strategies investigated include design elements, leak detection and testing approaches, and non-destructive examinations. Specific combinations of strategies are determined to be necessary and sufficient to achieve target reliability goals for passive components. This study recommends a basis for the RIM program for the PBMR Demonstration Power Plant (DPP) and provides guidance for the development by the American Society of Mechanical Engineers (ASME) of RIM requirements for Modular High Temperature Gas-Cooled Reactors (MHRs).


Author(s):  
N.J. Tighe ◽  
H.M. Flower ◽  
P.R. Swann

A differentially pumped environmental cell has been developed for use in the AEI EM7 million volt microscope. In the initial version the column of gas traversed by the beam was 5.5mm. This permited inclusion of a tilting hot stage in the cell for investigating high temperature gas-specimen reactions. In order to examine specimens in the wet state it was found that a pressure of approximately 400 torr of water saturated helium was needed around the specimen to prevent dehydration. Inelastic scattering by the water resulted in a sharp loss of image quality. Therefore a modified cell with an ‘airgap’ of only 1.5mm has been constructed. The shorter electron path through the gas permits examination of specimens at the necessary pressure of moist helium; the specimen can still be tilted about the side entry rod axis by ±7°C to obtain stereopairs.


Author(s):  
Dmitry V. Nesterovich ◽  
Oleg G. Penyazkov ◽  
Yu. A. Stankevich ◽  
M. S. Tretyak ◽  
Vladimir V. Chuprasov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document