integrity management
Recently Published Documents


TOTAL DOCUMENTS

930
(FIVE YEARS 203)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 245 ◽  
pp. 110540
Author(s):  
Yifei Yan ◽  
Shengyue Zhang ◽  
Xin Jin ◽  
Liangbin Xu ◽  
Xiangzhen Yan

Author(s):  
Olutayo Opeyemi Ogunmilua

Abstract: Export pipelines are of inestimable value to the oil and gas industry, as they have continuously provided a path and means for hydrocarbon transportation. The most recent report from the UK HSE shows that there are about 1372 pipelines installed in the UK North-sea and about 442 of them are ageing export pipelines. The most unique function of these pipelines is to convey fluids from HC wells to the available processing facility; which are applicable for both onshore and offshore applications. During the useful life of these pipelines, they encounter various degradations that range from fatigue, corrosion, thermal expansion, spans, erosion and many other associated third-party challenges. It is the responsibility of duty holders to ensure that these degradations do not propagate into triggering hazardous and catastrophic incidents, to this effect, it is necessary for operators to protect the state of these pipelines by the application of an efficient management structure known as Pipeline Integrity Management System (PIMS). Keywords: Pipeline, Export, Ageing, Key Performance Indicators, PARLOC, OGP, Management, Integrity, Degradation Mechanism, Mitigation, PIMS.


Author(s):  
Duhui Lu ◽  
Guangpei Cong ◽  
Bing Li

Abstract With the number of long-distance pipelines increasing in China, risk management has become important for controlling pipeline leakage. However, all the current assessment technologies are semi-quantitative and do not include inspection data. To address this problem, a new quantitative risk assessment model is proposed to guide decision-making on excavation inspection and maintenance. Based on previous failure cases, the model includes data about the surrounding soils as well as about the pipeline's protective layer, cathodic protection and thickness readings. Testing of the proposed model on previous failure cases shows that the new model can correctly assess the real leakage risk of a long-distance pipeline and support the quantitative integrity management of a long-distance pipeline during its whole service life.


2021 ◽  
Author(s):  
Giorgio Ferrario ◽  
Salvatore Grimaldi

Abstract Capitalization of lessons learned on Asset Integrity Management during Front End Loading phases of a green field Project Development, by defining plan for implementation of a diagnostic digital tool for reducing downtime and introduce predictive maintenance during Operation. Eni developed a platform of Digital applications for enhanced Operations management by implementing an Integrated Asset Management (IAM) system. Advanced Analytics tool is part of it and is designed for monitoring, foreseeing and preventing production upsets and anomalies; the tool is set up by verification of areas of interest and criticalities, with identification of main equipment data sets and by the implementation and validation of predictive models. Starting from historical data, data scientists supported by experts develop algorithms capable of finding interdependencies between a set of input variables and an output variable (phenomenon to be predicted/monitored), thus detecting anomalies and criticalities. Main areas of benefit are envisaged on Production continuity, capable of predicting problems on static and rotating equipment and giving information on the most impacting variables on the incipient problems. The tool will support technicians to help them preventing failures and out-of-specs events which may cause loss of production or asset integrity issues, with the activation of predictive maintenance and the aim to strive a continuous monitoring and improvement of plant operational performances. An Energy Efficiency predictive model will also be set up, capable of forecasting the future energy performances of the asset through the prediction of the Stationary Combustion of Carbon Dioxide (CO2) emission index (t CO2/kbbl) and providing the list of the main influencing equipment and variables. The plan for implementation of the tool from the Early phases of development help the organization on prioritizing the implementation of Digital tools as part of the execution and realization of the Asset to be delivered to the Operational personnel, by easing the transition and avoiding subsequent retrofitting carrying brownfield works and additional costs. The implementation of Advanced Analytics tool has been embedded in a new green field initiative of a Development Project since Front End Loading phases, thus fostering digital implementation and minimizing deployment costs by including those as part of the Investment Proposal presented to Joint Venture Partners and Authorities.


2021 ◽  
Author(s):  
Raymond Nicholas Burke ◽  
Abdallah Mohd AR Al Tamimi ◽  
Wael Salem Al Shouly ◽  
Mohamed Ali Jaber ◽  
David Erik Baetsen

Abstract Industry-wide, the degradation and corrosion of steel infrastructure and the associated maintenance to prevent or mitigate this, poses a heavy environmental and operational burden across many industry segments. To address these challenges, ADNOC Group Technology, led by our Non-Metallic Steering Committee and ADNOC Upstream, in partnership with several selected specialist product companies, is deploying a range of innovative solutions as pilot trials within a holistic R&D program – which is aiming to transform our production and processing facilities, with a close focus on integrity management – and specifically we are assessing the deployment of non-metallic pipelines, storage and process vessels as well as downhole tubing and casing. Focusing specifically on flowlines and pipelines - traditional steel pipes used in the oil patch are burdensome to store, transport and install, as well as susceptible to degradation, corrosion-driven wall loss in challenging operational environments, such as those found Onshore and Offshore Abu Dhabi. This vulnerability results in increased operating risks as facilities mature, adding cost and time for inspection, maintenance and eventually - replacements that will lead to production deferrals or interruptions. A range of non-metallic pipeline technologies are being assessed and piloted in this program, including stand-alone extruded polymeric pipe and liners, Reinforced Thermoplastic Pipe (RTP) used Onshore and Offshore, specialized non-metallic flexible pipelines for Offshore including Thermoplastic Composite Pipe (TCP) and downhole tubulars. The methodology involves placing segments of RTP into live pipeline systems for a finite duration of operation – usually one year – and then removing sections to assess any degradation in performance, or capability of the RTP during that time. These test results will be the subject of a further publication at the end of this trial period. In this paper, we will focus on RTP piloting Onshore and specifically mention a unique trial in an ultra-sour gas field, where the technology has already delivered the required performance: safely transporting gas with levels of H2S up to 10% by volume. This trial also proves that specifically engineered non-metallic products may be successfully operated at the high temperature and high pressure (HPHT) levels that are characteristic of our reservoirs.


2021 ◽  
Author(s):  
Alessandro La Grotta ◽  
Róisín Louise Harris ◽  
Clive Da Costa

Abstract While Floating Offshore Wind (FOW) represents a significant opportunity to foster wind energy development and to contribute to remarkable CO2 emissions reductions, its associated operational costs are still substantially above grid parity, and significant innovation is needed. MooringSense is a research and innovation project which explores digitisation technologies to enable the implementation of risk-based integrity management strategies for mooring systems in the FOW sector with the aim to optimise Operations and Maintenance (O&M) activities, reduce costs, and increase energy production. As part of this project, a risk-based assessment methodology specific for the mooring system of Floating Offshore Wind Turbines (FOWT) has been developed; this allows the development of a risk-based Mooring Integrity Management Strategy that can result in more cost-effective inspection planning. The methodology shall utilise the information made available by numerical tools, sensors, and algorithms developed in the project to update the risk level of the mooring system and set the required plan to mitigate the risk. Leveraging the additional information from monitoring technologies and predictive capabilities to determine the mooring system condition and remaining lifetime, the strategy provides the criteria for optimal decision making with regards to selection of O&M activities. The risk-based strategy developed allows for optimal planning of inspection and maintenance activities based on dynamic risk level that is periodically updated through the interface with the Digital Twin (DT). The validation of the strategy will demonstrate potential cost saving and economic advantages, however, it is expected that the overall MooringSense approach can reduce FOW farm operational costs by 10-15% and increase operational efficiency by means of an Annual Energy Production increase by 2-3%. The MooringSense project comprises of the development and validation of innovative solutions coming from multiple disciplines such as numerical modelling, simulation, Global Navigation Satellite System (GNSS), Structural Health Monitoring (SHM), and control systems which will provide valuable input to the risk-based mooring integrity management strategy.


2021 ◽  
Author(s):  
Frederic Anthony Corsiglia ◽  
Hani Haidar ◽  
Andrew Duncan Frost

Abstract Asset integrity management is a life cycle concept typically initiated in the conceptual and detailed design phase of projects. Parallel with the development of equipment and system lists, the process of building maintenance job plans starts. Tools, such as criticality assessment, are used to identify the type of engineering deliverable from which the maintenance job plan is built. For a large majority of equipment and systems, original equipment manufacturer (OEM) recommended or fleet inspection, maintenance and testing (IMT) plans are adequate. For a smaller subset, more detailed plans leveraging risk-based inspection (RBI) and reliability-centered maintenance (RCM) concepts are developed building a regime of preventative maintenance focused on data collection in the commissioning and early operation of the facility. For an extremely limited subset of equipment, mostly machinery, but could include pipelines, electrical and product analyzers, the most detailed plans are developed which are highly specific to a particular equipment tag. Criticality assessment is commonly cited as a core process for prioritization of RBI/RCM plan development initially with spare parts inventories and work management later in the life cycle. International standards such as ISO 14224, Petroleum, petrochemical and natural gas industries — Collection and exchange of reliability and maintenance data for equipment, provide a framework for asset hierarchy and taxonomy which will prove to be important during the operating phase of the life cycle where surveillance and corrective maintenance data will be leverage to optimize maintenance job plans. ISO 14224 refers to IEC 60812, Failure modes and effects analysis (FMEA and FMECA), for treatment of Failure Mode Effects and Criticality Assessment (FMECA). To a large extent, ISO 60812 leaves determination of the variables to drive criticality assessment up to the operator saying only that two or more variables should be used. Variables used commonly include consequence of failure, but also maintainability and complexity. Benchmarks for criticality assessment suggest about 10% of equipment merits identification as critical (reference needed). Criticality is important as a foundation to integrity management as work linked to primary function carries an inherited technical characteristic of the equipment and systems. Over time, additional equipment and systems will be added (or removed) from critical equipment lists through continuous improvement processes such as root cause failure analysis (RCFA). With the prioritization of developing maintenance plans through fleet and RBI/RCM processes and their resultant deliverables defined, the detailed plans are identified through collaboration of technical, maintenance and operations staff specialists. Fundamentally, the process involves identification of hazards which can result in impaired primary and secondary functionality, estimation of unmitigated risk, identification of work to mitigate risk, estimation of mitigated risk, calculation of benefit-to-cost and documenting the analysis into the system of record. Consistency in the processes can be assured through application of procedures and references that typically reference a risk matrix. As each hazard is reviewed, there may be multiple failures modes (e.g. hole, crack, rupture) which needs to be considered independently. Consequence assessment is performed for a range of Safety Health Environmental and Security (SHES) scenarios associated with the failure mode. Probability assessment for the scenarios is performed using the available design parameters. The combined consequence and probability form the initial unmitigated risk basis for the scenario. Inspection, maintenance and testing activities are selected by the collaborating specialists with focus of input from technical on probability mitigation, maintenance on cost and operations on benefit. The scenarios is then revisited to document the mitigated risk.


2021 ◽  
Author(s):  
Babar Mohamed Saleem ◽  
Janardhanan Kunissery Puliyakotte ◽  
Abullais Ullalil Mundeth ◽  
Diaa Mohamed Yasein ◽  
Mohammed Ali Al-Muri ◽  
...  

Abstract ADNOC BAB Field has 11 water disposal wells, which are currently being monitored manually. The paper is about the implementation of remote annulus pressure monitoring for water disposal wells. The manual methods of monitoring remote annulis pressure comes in with inherent disadvantages like no continuous monitoring and deployment of our skilled resources for the same. The paper throws light on the present issues faced while using the manual monitoring and how it has been covered when the proposed wireless technology is implemented. Also the paper illustrates, the savings in terms of man power and resources and relevance of the technology to the modern age oil and gas upstream industry considering the scalablity to more number of wells in vast oil fields.


2021 ◽  
Author(s):  
Yahya Hamood Al Naumani ◽  
Abdul Aziz Ahmed Al Abri ◽  
Mahmood Ahmed Al Ruqaishi

Abstract Emergency Shutdown (ESD) and Blowdown (BDV) valves are the final elements part of the Safety Instrumented Functions (SIF) in which are deployed in oil and gas assets. They are classified as safety critical equipment to prevent major accident hazards. The conventional method of proof testing these valves is to close/open them fully, and thus require a process shutdown. In general, planned process shutdown is only viable every two to four years. Such infrequent and limited tests lead to imperfect testing and degrade the reliability of safety instrumented functions. Accordingly, this paper presents the work done to develop a comprehensive maintenance strategy that addresses lifecycle management of safety instrumented function in operate phase which help reduce the potential of process safety incidents. In summary, the innovative approach presented by this paper offers best practice of safety critical system integrity management implementation to achieve the highest standards of operational excellence.


2021 ◽  
Author(s):  
Asad Ali ◽  
Kevin Maley ◽  
Seonyeob Li ◽  
Ahmed Al Owaid ◽  
Abdulla Al Shehhi

Abstract Asset integrity management system (AIMS) consisting of risk based inspection (RBI) and inspection management system (IMS) coupled with digitized equipment records and use of inspection tablets/mobiles will make paperless system for fast and timely decisions & actions. This paper provides a roadmap for implementation of an efficient and cost effective asset integrity management system that will increase the plant reliability & availability, decrease the time and efforts required for inspection, thus ultimately reducing the associated costs of operations. In this paper, the focus is towards digitalized AIMS that should make a company move to digital transformation and enabling it to adapt to industry 4.0 technologies such as artificial intelligence, augmented reality, data analytics, machine learning etc. First step is to perform a gap assessment of existing system to compare what is currently available within organization and what is required for going fully digital for AIM. Next step is to identify software features that are required for AIM digitalization and establish them as point based rating system which are used for rating best suitable software available in the market. Unique features for RBI module, inspection management module and field interface (tablet) module are identified with appropriate weightage to influence the software selection decision. Finally, an estimation of required resources, manpower timeline is provided that will guide in all phases of the implementation. Return on investment on such projects is manifolds. The digitalized AIM will greatly reduce the cost of day to to asset integrity management operations as it will no longer be needed to use multiple paper based reports and separate systems for RBI and IMS functions. Use of field tablet/mobile with possibility of artificial intelligence tools, will significantly reduce the time required for inspectors to do the on site inspection/testing & reporting. Interfacing of digitalized system with ERP/CMMS will automate the work order/notification system. Thus it will reduce an overall effort both in terms of time & money. The roadmap for digitalization of AIMS system will help any organization to make its AIMS digital and achieve the benefits of such system. The methodology provided is unique and can be adopted as best practices by the industry for digitally transforming the AIMS.


Sign in / Sign up

Export Citation Format

Share Document