scholarly journals BIOMECHANICAL EVALUATION OF FUNCTIONAL FOOT ORTHOSES WITH CARBON FIBER PLATE-A FINITE ELEMENT ANALYSIS(1C3 Musculo-Skeletal Biomechanics III)

Author(s):  
Shih-Cherng Lin ◽  
Sheng-Pin Tsai ◽  
Fuk-Tan Tang ◽  
Weng-Pin Chen
2021 ◽  
Vol 5 (7) ◽  
pp. 170
Author(s):  
Pablo Castillo Ruano ◽  
Alfred Strauss

In recent years, interest in low-cost seismic isolation systems has increased. The replacement of the steel reinforcement in conventional elastomeric bearings for a carbon fiber reinforcement is a possible solution and has garnered increasing attention. To investigate the response of fiber-reinforced elastomeric bearings (FREBs) under seismic loads, it is fundamental to understand its mechanical behavior under combined vertical and horizontal loads. An experimental investigation of the components presents complexities due to the high loads and displacements tested. The use of a finite element analysis can save time and resources by avoiding partially expensive experimental campaigns and by extending the number of geometries and topologies to be analyzed. In this work, a numerical model for carbon fiber-reinforced bearings is implemented, calibrated, and validated and a set of virtual experiments is designed to investigate the behavior of the bearings under combined compressive and lateral loading. Special focus is paid to detailed modeling of the constituent materials. The elastomeric matrix is modeled using a phenomenological rheological model based on the hyperelastic formulation developed by Yeoh and nonlinear viscoelasticity. The model aims to account for the hysteretic nonlinear hyper-viscoelastic behavior using a rheological formulation that takes into consideration hyperelasticity and nonlinear viscoelasticity and is calibrated using a series of experiments, including uniaxial tension tests, planar tests, and relaxation tests. Special interest is paid to capturing the energy dissipated in the unbonded fiber-reinforced elastomeric bearing in an accurate manner. The agreement between the numerical results and the experimental data is assessed, and the influence of parameters such as shape factor, aspect ratio, vertical pressure, and fiber reinforcement orientation on stress distribution in the bearings as well as in the mechanical properties is discussed.


2020 ◽  
Author(s):  
Yuan-Wei Zhang ◽  
Liang-Yu Xiong ◽  
Zu-Tai Huang ◽  
Xin Xiao ◽  
Su-Li Zhang ◽  
...  

Abstract The authors have withdrawn this preprint due to author disagreement.


Author(s):  
Syakirah Mohamed Amin ◽  
Muhammad Hanif Ramlee ◽  
Hadafi Fitri Mohd Latip ◽  
Gan Hong Seng ◽  
Mohammed Rafiq Abdul Kadir

Millions in the world suffering diabetes mellitus depends on insulin therapy to control their blood glucose level daily. However, the painful daily injections they need to take could lead to other complications if it is not done correctly. To date, it is suggested by many researchers and medical doctors that the needles should be inserted at any angles of 90º or 45º. Nevertheless, this recommendation has not been supported by clinical or biomechanical evaluation. Hence, this study evaluates the needle insertion for insulin therapy to find the favourable angles in order to reduce injury and pain onto the skin. Finite element analysis was done by  simulating the injection of three-dimensional (3D) needle model into a 3D skin model. The insertions were simulated at two different angles, which are 45ºand 90º with two different lengths of needles; 4 mm and 6 mm. This study concluded the favourable angle for 4 mm needle to be 90º while 6 mm needle was best to be inserted at 45º as these angles exerted the least maximum stress and strain onto the skin.


2014 ◽  
Vol 112 (6) ◽  
pp. 1479-1488 ◽  
Author(s):  
Guilherme Carvalho Silva ◽  
Tulimar Machado Cornacchia ◽  
Cláudia Silami de Magalhães ◽  
Audrey Cristina Bueno ◽  
Allyson Nogueira Moreira

Sign in / Sign up

Export Citation Format

Share Document