axial loading
Recently Published Documents


TOTAL DOCUMENTS

1805
(FIVE YEARS 429)

H-INDEX

58
(FIVE YEARS 7)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 324
Author(s):  
Ahmad Rashedi ◽  
Riadh Marzouki ◽  
Ali Raza ◽  
Khawar Ali ◽  
Niyi Gideon Olaiya ◽  
...  

This study seeks to evaluate the effectiveness of glass-FRP-reinforced geopolymer concrete columns integrating hybrid fibres (GFGC columns) and steel bar-reinforced geopolymer concrete columns incorporating hybrid fibres (SFGC columns) under eccentric and concentric loadings. Steel fibre (SF) and polypropylene fibres (PF) are two types of fibres that are mixed into hybrid fibre-reinforced geopolymer concrete (HFRGC). Eighteen circular concrete columns with a cross-section of 300 mm × 1200 mm were cast and examined under axial loading up to failure. Nine columns were cast with glass-FRP rebars, whereas the other nine were cast with steel rebars. Using ABAQUS, a nonlinear finite element model was established for the GFGC and SFGC columns. The HFRGC material was modelled using a simplified concrete damage plasticity model, whereas the glass-FRP material was simulated as a linear elastic material. It was observed that GFGC columns had up to 20% lower axial strength (AST) and up to 24% higher ductility indices than SFGC columns. The failure modes of both GFGC and SFGC columns were analogous. Both GFGC and SFGC columns revealed the same effect of eccentricity in the form of a decline in AST. A novel statistical model was suggested for predicting the AST of GFGC columns. The outcomes of the experiments, finite element simulations, and theoretical results show that the models can accurately determine the AST of GFGC columns.


Author(s):  
Kohta Ito ◽  
Tomoya Nakamura ◽  
Ryo Suzuki ◽  
Takuo Negishi ◽  
Motoharu Oishi ◽  
...  

To comparatively investigate the morphological adaptation of the human foot for achieving robust and efficient bipedal locomotion, we develop three-dimensional finite element models of the human and chimpanzee feet. Foot bones and the outer surface of the foot are extracted from computer tomography images and meshed with tetrahedral elements. The ligaments and plantar fascia are represented by tension-only spring elements. The contacts between the bones and between the foot and ground are solved using frictionless and Coulomb friction contact algorithms, respectively. Physiologically realistic loading conditions of the feet during quiet bipedal standing are simulated. Our results indicate that the center of pressure (COP) is located more anteriorly in the human foot than in the chimpanzee foot, indicating a larger stability margin in bipedal posture in humans. Furthermore, the vertical free moment generated by the coupling motion of the calcaneus and tibia during axial loading is larger in the human foot, which can facilitate the compensation of the net yaw moment of the body around the COP during bipedal locomotion. Furthermore, the human foot can store elastic energy more effectively during axial loading for the effective generation of propulsive force in the late stance phase. This computational framework for a comparative investigation of the causal relationship among the morphology, kinematics, and kinetics of the foot may provide a better understanding regarding the functional significance of the morphological features of the human foot.


Author(s):  
Hamid Hasanzadeh ◽  
Ehsan Mohtarami ◽  
Mohammad Ebadati ◽  
Kazem Reza Kashyzadeh ◽  
Mostafa Omidi Bidgoli

The current research is conducted to investigate the experimental and numerical study of crushing behavior and buckling modes of thin-walled truncated conical shells with or without cutouts and discontinuities under axial loading. In this regard, Instron 8802 servohydraulic machine is used to perform the experiments. Additionally, the buckling modes, derived from the axial collapse phenomenon, are simulated with Finite Element (FE) software. The force-displacement diagrams extracted numerically are compared with experimental results. Various factors, including maximum force, energy absorption, specific energy, and failure modes of each case, are also discussed. The results indicate that the increasing cutout cause a decrease in the maximum force and energy absorption. Moreover, with cutouts reduction, the failure modes of the samples changed from the diamond asymmetric mode and single-lobe mode to multi-lobes, and with removing cutouts, the failure mode is observed to be completely symmetric.


2021 ◽  
pp. 108128652110587
Author(s):  
Murtadha J. Al-Chlaihawi ◽  
Heiko Topol ◽  
Hasan Demirkoparan ◽  
José Merodio

The influence of swelling on prismatic and bending bifurcation modes of inflated thin-walled cylinders under axial loading is examined. The bifurcation criteria for a membrane cylinder subjected to combined axial loading, internal pressure, and swelling is provided. We consider orthotropic materials with two preferred directions which are mechanically equivalent and symmetrically disposed. The mechanical behavior of the matrix is described by a swellable isotropic model. The isotropic material is augmented with two functions that are equal, each one of them accounting for the existence of a unidirectional reinforcement. Two reinforcing models that depend only on the stretch in the fiber direction are considered: the so-called standard reinforcing model and an exponential one. The analysis of bifurcation modes for these models under the conditions at hand may establish the connection with modeling of the normal and diseased aorta in arterial wall tissue. The effects of the axial stretch, the strength of the fiber reinforcement and the fiber winding angle on the onset of prismatic and bending bifurcations are investigated. It is shown that for membranes without fibers, prismatic bifurcation is not feasible. On the other hand, bending bifurcation is more likely to occur for swollen cylinders. However, for a particular model of fiber-reinforced membranes, the standard model, there exists a domain of deformation values together with material constant values that may trigger prismatic bifurcation. The exponential model does not allow prismatic bifurcations. Both models allow bending bifurcation and may or may not trigger it depending on the deformation together with material parameters.


Author(s):  
Deniz Bulja ◽  
Jasna Strika ◽  
Merim Jusufbegović ◽  
Muris Bečirčić ◽  
Adnan Šehić ◽  
...  

Introduction: Axial-loaded magnetic resonance imaging (MRI), which can simulate an upright position of the patient may cause a significant reduction of the dural sac cross-sectional area (DCSA) compared with standard MRI, thus providing valuable information in the assessment of the lumbar spinal canal. The purpose of this study was to investigate excessiveness of the change in DCSA and depth of lateral recesses (DLRs) before and after axial-loaded imaging in relation to body mass index (BMI) of the subjects.Methods: Twenty patients were scanned to evaluate DCSA and DLR at three consecutive lumbar spine intervertebral disc levels (L3/4, L4/5, and L5/S1) on conventional-recumbent MRI, and after axial loading were applied.Results: Axial-loaded MRI demonstrates a significant difference of DSCA in comparison to conventional MRI. Furthermore, results show a significant correlation between the DCSA and BMI on level L3/L4, both before and after axial loading MRI. With axial loading, there is a reduction of DSCA of 12.2%, 12.1%, and 2.1% at the levels L3/L4, L4/L5, and L5/S1, respectively. After axial loading has been applied, the depth of the neural foramen has been reduced by an average of 10.1%.Conclusion: Axial-loaded MRI reduces DCSA and DLRs in comparison to standard MRI. Information obtained in this way may be useful to explain the patient’s symptomatology and may provide an additional insight that can influence the treatment decision plan accordingly.


Author(s):  
Nazim Faisal Hamed ◽  
Mohammed Hussen Sheikha ◽  
Ahmed Sughayyir Albalawi ◽  
Abdulrahman Abdullah Aloufi ◽  
Abdullah Khalaf A. Alshammari ◽  
...  

This review aimed to summarize the updates in the causes, diagnosis and management of knee injuries in children and adolescents. Knee injuries are common and are often the result of multiple forces: varus, valgus, hyperextension, hyperflexion, internal rotation, external rotation, anterior or posterior translation, and axial loading. Certain combinations of force are known to cause specific patterns of injury. A knee injury can affect any ligaments, tendons, or fluid-filled sacs (bursae) that surround the knee joint, as well fas the bones, cartilage, and ligaments that make up the joint itself. ACL injuries are one of the most common types of knee injuries, including a torn meniscus that is common in sports that require jumping jacks, patellar fractures, and knee bruises. Magnetic resonance imaging (MRI) is often used to more fully evaluate knee injuries. Radiologists can accurately identify individual lesions and combinations of lesions. Surgical and non-surgical treatments are performed depending on the case.


Sign in / Sign up

Export Citation Format

Share Document