fiber reinforcement
Recently Published Documents


TOTAL DOCUMENTS

741
(FIVE YEARS 225)

H-INDEX

43
(FIVE YEARS 7)

2022 ◽  
Vol 12 (2) ◽  
pp. 697
Author(s):  
Sabine Kruschwitz ◽  
Tyler Oesch ◽  
Frank Mielentz ◽  
Dietmar Meinel ◽  
Panagiotis Spyridis

Integration of fiber reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel fiber reinforced concrete (SFRC) is the deceleration of crack growth and hence its improved sustainability. Additional benefits are associated with its structural properties, as fibers can significantly increase the ductility and the tensile strength of concrete. In some applications it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fiber reinforcement can, however, have critical disadvantages and even hinder the performance of concrete, since it can induce an anisotropic material behavior of the mixture if the fibers are not appropriately oriented. For a safe use of SFRC in the future, reliable non-destructive testing (NDT) methods need to be identified to assess the fibers’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computed tomography have been investigated for this purpose using specially produced samples with biased or random fiber orientations. We demonstrate the capabilities of each of these NDT techniques for fiber orientation measurements and draw conclusions based on these results about the most promising areas for future research and development.


Author(s):  
Mahmoud Saad ◽  
Vincent Sabathier ◽  
Anaclet Turatsinze ◽  
Sandrine Geoffroy

Throughout time, the use of lignocellulosic resources has been implemented in the development of building materials. Among these resources, natural fibers are used as mineral binders reinforcement due to their specific mechanical properties. This experimental investigation focused on effect of flax and hemp fiber reinforcement on the resistance of pozzolanic-based mortars to cracking due to restrained plastic shrinkage. Results were compared with polypropylene fiber reinforcement and with control mortar without fibers. The quantity of fibers added to the mortar mix were respectively 0.25% - 0.5% by mass of binder for polypropylene fibers and 0.5% - 1% by mass of binder for flax and hemp fibers. All fibers have a similar length of 12 mm. The cracking sensitivity was evaluated based on two different methods: the first consists in casting the mortar in a metal mold with stress risers whose criteria are inspired by the ASTM standards. The second consists in pouring the mortar on a brick support. In order to assess the effect of fibers on cracking due to restrained plastic shrinkage, the number of cracks, total crack area and maximum crack width within the first 6 hours after casting were determined using digital image correlation (DIC). Results showed that the flax and hemp fibers were more effective in controlling restrained plastic shrinkage cracking compared to polypropylene fibers. With a natural fiber of 1% by mass of binder, maximum crack width was reduced by at least 70% relative to control mortar based specimens. Natural fibers show great ability to propensity for cracking due to restrained plastic shrinkage; so that, they could be an alternative and ecological solution for polypropylene fibers.


2022 ◽  
Vol 23 (1) ◽  
pp. 339-348
Author(s):  
Santhosh priya Karjala ◽  
Vijay Kumar Kuttynadar Rajammal ◽  
Suresh Gopi ◽  
Rajesh Ravi ◽  
Devanathan Chockalingam ◽  
...  

The main objective of this study is to compare the interpenetrating polymer networks’ (IPNs) physical strengths with different variants of fibers. In this study, E-glass, carbon, and a combination of E-glass and carbon fiber (hybrid) have been taken as the reinforcement. Similarly, three combinations of the IPNs were chosen as the matrix material, namely epoxy / polyurethane (EP), vinyl ester / polyurethane (VP) and epoxy/vinyl ester (EV) as IPN blends. In order to thoroughly understand the physical characteristics of the combination of blends and fibers, nine variants (laminates) were fabricated: combinations of epoxy / polyurethane / E-glass (EPG), epoxy / polyurethane / carbon (EPC), epoxy / vinyl ester / glass / carbon (EPGC-hybrid), vinyl ester / polyurethane / glass (VPG), vinyl ester / polyurethane / carbon (VPC), vinyl ester / polyurethane / glass / carbon (VPGC), epoxy / vinyl ester / glass (EVG), epoxy / vinyl ester / carbon (EVC), and epoxy / vinyl ester / glass / carbon (EVGC-hybrid), all with help of a hand-layup technique. Furthermore, mechanical tests such as tensile, flexural, impact, and HDT (heat distortion temperature) were performed on all the variants as per the ASTM standards. Results shows that carbon fiber reinforcement with all IPN combinations has shown extraordinary performance (double fold) over the E-glass fiber reinforcement, whereas the hybrid (combination of E-glass/carbon) laminates have shown excellent characteristics over E-glass fiber reinforcement, irrespective of IPN matrix material. All the results were compared with each other and their corresponding variations were plotted as bar charts. ABSTRAK:  Objektif utama kajian ini adalah bagi membandingkan kekuatan fizikal rangkaian polimer saling menusuk (IPN) dengan pelbagai jenis gentian berbeza. Kajian ini mengguna pakai gentian kaca-E, karbon dan gabungan kaca-E dan gentian karbon (hibrid) sebagai penguat. Begitu juga, tiga kombinasi IPN dipilih sebagai bahan matrik, iaitu epoksi / poliuretan (EP), ester vinil / poliuretan (VP) dan epoksi / ester vinil (EV) sebagai campuran IPN. Bagi tujuan memahami secara mendalam ciri-ciri fizikal gabungan campuran dan gentian, sembilan varian (lamina) dihasilkan, malaui kombinasi seperti epoksi / poliuretan / kaca-E (EPG), epoksi / poliuretan / karbon (EPC), epoksi / ester vinil / kaca / karbon (EPGC-hibrid), ester vinil / poliuretan / kaca (VPG), ester vinil / poliuretan / karbon (VPC), ester vinil / poliuretan / kaca / karbon (VPGC), epoksi / ester vinil / kaca (EVG), epoksi / ester vinil / karbon (EVC), epoksi / ester vinil / kaca / karbon (EVGC-hibrid) dengan teknik susun atur lapisan menggunakan tangan. Selain itu, ujian mekanikal seperti tegangan, lenturan, hentaman dan HDT (suhu kelenturan panas) dilakukan pada semua varian mengikut piawaian ASTM. Dapatan kajian menunjukkan bahawa, penguat gentian karbon dengan semua kombinasi IPN telah menunjukkan prestasi luar biasa (dua kali ganda) daripada penguat gentian kaca-E, manakala lamina hibrid (campuran kaca-E / karbon) telah menunjukkan ciri-ciri sangat baik berbanding penguat gentian kaca-E tanpa mengira bahan matrik IPN. Semua hasil dapatan dibandingkan antara satu sama lain dan padanan variasi diplot sebagai carta bar.


2021 ◽  
Vol 21 (6) ◽  
pp. 239-245
Author(s):  
Young-Man Cha ◽  
Ki-Young Eum ◽  
Ja-Yeon Kim ◽  
KookHwan Cho

The roadbed reinforcement method using cuboidal fiber reinforcement is an eco-friendly method that compensates for the shortcomings of various existing roadbed reinforcement technologies. A rectangular parallelepiped fiber reinforcement was installed in section oo of the existing line where fine-grained gravel, floating sleepers, and sleeper cracks occurred. The basic physical property test of the upper subgrade was conducted, and the vertical displacement and acceleration of rails and sleepers were compared and analyzed according to the train operation of the reinforced and non-reinforced sections. A comparative analysis of the vertical displacement and acceleration according to train operation after laying the rectangular parallelepiped fiber reinforcement demonstrated that the vertical displacement and acceleration were reduced by up to 84% and 80%, respectively. The dynamic movement of the rail was reduced owing to the reinforcing effect of the rectangular parallelepiped reinforcement, thereby improving the roadbed bearing capacity and stability.


Author(s):  
Khan Asem Ali

Abstract: The world that is evolving at a very fast pace, the anxiety of the environment pollutions increasing has tip the necessity for new eco-friendly materials, researchers have started to develop sustainable materials that are renewable as well as biodegradable in nature. The natural fibers have certain advantages above synthetic fiber materials, they are lower in cost and density with comparable strength. In the present study, banana fiber is reinforced in the epoxy matrix and a composite material is prepared and impact strength of these composites are estimated. This composite samples are prepared by Wet lay-up method with varying banana fibers volume percentages by (10%, 20%, 30%, 40%) and by changing the fibers orientation in the epoxy matrix by (00 ,900 , woven Bi-directional). The results shows that there is gradual increase in the impact strength of the epoxy for 900 banana fiber orientation, the optimum results were found for 40% banana fiber and 60% epoxy resin, as for woven BD there was an increase in the impact strength up to 20% banana fiber reinforcement, as for 00 orientation the strength increases up to 10% fiber reinforcement above this there was a drastic reduction in the impact strength. Keywords: Banana Fiber, Epoxy Resin, Volume percent, Fiber Orientation, Impact Strength


2021 ◽  
Vol 5 (12) ◽  
pp. 316
Author(s):  
Elmar Moritzer ◽  
Maximilian Richters

Wood fiber reinforcement of plastics is almost limited to polypropylene, polyethylene, polyvinyl chloride and polystyrene. Wood fiber reinforcement of thermoplastic polyurethanes (TPU) is a new research field and paltry studied scientifically. Wood fiber reinforcement can carry out synergistic effects between sustainability, material or product price reduction, improved mechanical properties at high elongation, and brilliant appearance and haptics. In order to evaluate to what extent the improvement of mechanical properties depend on material-specific parameters (fiber type, fiber content) and on process-specific parameters (holding pressure, temperature control and injection speed), differently filled compounds were injection molded according to a partial factorial test plan and subjected to characterizing test procedures (tensile test, Shore hardness and notched impact test). Tensile strength showed significant dependence on barrel temperature, fiber type and interaction between holding pressure and barrel temperature in the region of interest. Young’s modulus can be influenced by fiber content but not by fiber type. Notched impact strength showed a significant influence of cylinder temperature, fiber content, fiber type and the interaction between cylinder temperature and fiber content in the region of interest. Shore hardness is related to fiber content and the interaction between mold temperature and injection flow rate. Our results show not only that wood-filled TPU can be processed very well by injection molding, but also that the mechanical properties depend significantly on temperature control in the injection-molding process. Moreover, considering the significant reinforcing effect of the wood fibers, a good fiber-matrix adhesion can be assumed.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4022
Author(s):  
Juan Pratama ◽  
Sukmaji I. Cahyono ◽  
Suyitno Suyitno ◽  
Muhammad A. Muflikhun ◽  
Urip A. Salim ◽  
...  

Over the last few years, fused filament fabrication (FFF) has become one of the most promising and widely used techniques for the rapid prototyping process. A number of studies have also shown the possibility of FFF being used for the fabrication of functional products, such as biomedical implants and automotive components. However, the poor mechanical properties possessed by FFF-processed products are considered one of the major shortcomings of this technique. Over the last decade, many researchers have attempted to improve the mechanical properties of FFF-processed products using several strategies—for instance, by applying the short fiber reinforcement (SFR), continuous fiber reinforcement (CFR), powder addition reinforcement (PAR), vibration-assisted FFF (VA-FFF) methods, as well as annealing. In this paper, the details of all these reinforcement techniques are reviewed. The abilities of each method in improving tensile, flexural, and compressive strength are discussed.


Sign in / Sign up

Export Citation Format

Share Document