scholarly journals Post-Processing Method Using Ellipsoidal Equation for Particle Tracking Velocimetry Measurement Results

2002 ◽  
Vol 45 (1) ◽  
pp. 142-149 ◽  
Author(s):  
Yuichi MURAI ◽  
Takehiro IDO ◽  
Fujio YAMAMOTO
2019 ◽  
Vol 10 (7) ◽  
pp. 3196 ◽  
Author(s):  
Tommy Tang ◽  
Engin Deniz ◽  
Mustafa K. Khokha ◽  
Hemant D. Tagare

2001 ◽  
Vol 21 (2Supplement) ◽  
pp. 51-54
Author(s):  
Hiromasa SHIMIZU ◽  
Takehiro IDO ◽  
Yuichi MURAT ◽  
Fujio YAMAMOTO

Author(s):  
Justin Weber ◽  
Michael Bobek ◽  
Steven Rowan ◽  
Jingsi Yang ◽  
Ronald Breault

Abstract The US Department of Energy’s National Energy Technology Laboratory is pursuing the development of advanced energy conversion technologies, many of which use gas-solid reactors such as fluidized beds and risers. To understand these units and provide high fidelity particle velocities for model development and validation efforts, particle tracking velocimetry (PTV) is typically used and remains one of only a few ways to extract particle velocities from dense multiphase flow experiments. Combined with the rapidly improving cameras (higher frame rates, higher resolutions, and lower cost) and access to high performance computers, new particle tracking tools are needed. Tracker is an opensource, cross platform particle tracking velocimetry application for tracking objects in videos and image stacks. The goal of this project is to provide a tool that is, open source, continuously developed, does not rely on expensive software, parallel, has a graphical user interface (GUI), one continuous pipeline (from reading the file to post processing), well documented, and continuously tested and verified. The application has extensive preprocessing tools, two tracking methods including poly-projection and template matching, visualization tools, and post-processing tools. The techniques are tested using both synthetic data and real experimental images. The application is extremely flexible and is easily extended to other tracking techniques, with plans to add correlation-based algorithms and optical flow algorithms. The high-fidelity data being generated is now being used to validate computational fluid dynamic models that then will be used to predict the performance of these reactors, helping to achieve the US Department of Energy’s goal of developing novel, compact gas-solid reactors.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 603
Author(s):  
Hojung You ◽  
Rafael O. Tinoco

Acoustic deterrents are recognized as a promising method to prevent the spread of invasive grass carp, Ctenopharyngodon idella (Valenciennes, 1844) and the negative ecological impacts caused by them. As the efficacy of sound barriers depends on the hearing capabilities of carp, it is important to identify whether carps can recognize acoustic signals and alter their swimming behavior. Our study focuses on quantifying the response of grass carp larvae when exposed to out-of-water acoustic signals within the range of 100–1000 Hz, by capturing their movement using particle-tracking velocimetry (PTV), a quantitative imaging tool often used for hydrodynamic studies. The number of responsive larvae is counted to compute response ratio at each frequency, to quantify the influence of sound on larval behavior. While the highest response occurred at 700 Hz, we did not observe any clear functional relation between frequency of sound and response ratio. Overall, 20–30% of larvae were consistently reacting to sound stimuli regardless of the frequency. In this study, we emphasize that larval behaviors when exposed to acoustic signals vary by individual, and thus a sufficient number of larvae should be surveyed at the same time under identical conditions, to better quantify their sensitivity to sound rather than repeating the experiment with individual specimens. Since bulk quantification, such as mean or quantile velocities of multiple specimens, can misrepresent larval behavior, our study finds that including the response ratio can more effectively reflect the larval response.


Sign in / Sign up

Export Citation Format

Share Document