1403 An Experimental Study on the Turbulent Channel Flow over Spanwise Discrete Rough Wall

2010 ◽  
Vol 2010.48 (0) ◽  
pp. 429-430
Author(s):  
Takamichi DETO ◽  
Shinsuke MOCHIZUKI ◽  
Takatugu KAMEDA
2012 ◽  
Vol 712 ◽  
pp. 169-202 ◽  
Author(s):  
A. Busse ◽  
N. D. Sandham

AbstractThe effects of rough surfaces on turbulent channel flow are modelled by an extra force term in the Navier–Stokes equations. This force term contains two parameters, related to the density and the height of the roughness elements, and a shape function, which regulates the influence of the force term with respect to the distance from the channel wall. This permits a more flexible specification of a rough surface than a single parameter such as the equivalent sand grain roughness. The effects of the roughness force term on turbulent channel flow have been investigated for a large number of parameter combinations and several shape functions by direct numerical simulations. It is possible to cover the full spectrum of rough flows ranging from hydraulically smooth through transitionally rough to fully rough cases. By using different parameter combinations and shape functions, it is possible to match the effects of different types of rough surfaces. Mean flow and standard turbulence statistics have been used to compare the results to recent experimental and numerical studies and a good qualitative agreement has been found. Outer scaling is preserved for the streamwise velocity for both the mean profile as well as its mean square fluctuations in all but extremely rough cases. The structure of the turbulent flow shows a trend towards more isotropic turbulent states within the roughness layer. In extremely rough cases, spanwise structures emerge near the wall and the turbulent state resembles a mixing layer. A direct comparison with the study of Ashrafian, Andersson & Manhart (Intl J. Heat Fluid Flow, vol. 25, 2004, pp. 373–383) shows a good quantitative agreement of the mean flow and Reynolds stresses everywhere except in the immediate vicinity of the rough wall. The proposed roughness force term may be of benefit as a wall model for direct and large-eddy numerical simulations in cases where the exact details of the flow over a rough wall can be neglected.


Author(s):  
Xiaochun Shen ◽  
Kihyun Kim ◽  
Jamison L. Miller ◽  
Ryan Sun-Chee-Fore ◽  
Ana I. Sirviente

The effect of polymer injection on the turbulence characteristics of a fully developed turbulent water channel flow was studied. The main focus of this study was to assess the influence of the polymer solution injection concentration and consequent mixing. This study was conducted by measuring the turbulence characteristics of two fully developed turbulent channel flows for a Reynolds number of 5×104, with different injection concentrations of the same polymer solution but with the same homogeneous concentration at the test section. These measurements were complemented by visualizations of the flow, which revealed the presence of supra-molecular polymer structures. The development of such structures seems to enhance the drag reducing abilities of the polymer solution.


2012 ◽  
Vol 711 ◽  
pp. 161-170 ◽  
Author(s):  
Siddharth Talapatra ◽  
Joseph Katz

AbstractMicroscopic holographic PIV performed in an optically index-matched facility resolves the three-dimensional flow in the inner part of a turbulent channel flow over a rough wall at Reynolds number ${\mathit{Re}}_{\tau } = 3520$. The roughness consists of uniformly distributed pyramids with normalized height of ${ k}_{s}^{+ } = 1. 5{k}^{+ } = 97$. Distributions of mean flow and Reynolds stresses agree with two-dimensional PIV data except very close to the wall (${\lt }0. 7k$) owing to the higher resolution of holography. Instantaneous realizations reveal that the roughness sublayer is flooded by low-lying spanwise and groove-parallel vortical structures, as well as quasi-streamwise vortices, some quite powerful, that rise at sharp angles. Conditional sampling and linear stochastic estimation (LSE) reveal that the prevalent flow phenomenon in the roughness sublayer consists of interacting U-shaped vortices, conjectured in Hong et al. (J. Fluid Mech., 2012, doi:10.1017/jfm.2012.403). Their low-lying base with primarily spanwise vorticity is located above the pyramid ridgeline, and their inclined quasi-streamwise legs extend between ridgelines. These structures form as spanwise vorticity rolls up in a low-speed region above the pyramid’s forward face, and is stretched axially by the higher-speed flow between ridgelines. Ejection induced by interactions among legs of vortices generated by neighbouring pyramids appears to be the mechanism that lifts the quasi-streamwise vortex legs and aligns them preferentially at angles of $54\textdegree \text{{\ndash}} 63\textdegree $ to the streamwise direction.


Sign in / Sign up

Export Citation Format

Share Document