scholarly journals 705 Stress Intensity Factor of a Crack near the Interface under the Influence of Stress Singularity on Bonded Dissimilar Materials

2004 ◽  
Vol 2004.79 (0) ◽  
pp. _7-9_-_7-10_
Author(s):  
Hiroaki SATO ◽  
Seiji IOKA ◽  
Naoki FUJIMOTO ◽  
Shiro KUBO
2004 ◽  
Vol 261-263 ◽  
pp. 351-356
Author(s):  
Seiji Ioka ◽  
Shiro Kubo

When two materials are bonded, the free-edge stress singularity usually develops near the intersection of the interface and the free-surface. Fracture in bonded dissimilar materials may therefore occur from an interface crack which develops at the intersection of interface and free-surface. Free-edge stress singularity is very important in the evaluation of strength of bonded dissimilar materials. In this study, the relationship between the stress intensity factor of a small edge crack on interface of bonded dissimilar materials and the intensity of free-edge stress singularity of bonded dissimilar materials with no crack under external mechanical loading was investigated numerically by using the boundary element method. The relationship was also investigated theoretically by using the principle of superposition. The results of numerical analyses were compared with those of theoretical analyses. It was found that stress intensity factors of small edge crack on interface K1 and K2 were proportional to the intensity of free-edge stress singularity of bonded dissimilar materials Kσ without crack irrespective of the combination of materials. The numerically determined proportional coefficient between K1 and Kσ agreed well with the theoretical one, and was not affected by crack length when proper normalizations were applied. From these results, it is suggested that stress intensity factor of small edge crack on interface can be used as a strength criterion of interface of bonded dissimilar materials.


2020 ◽  
Vol 77 ◽  
pp. 585-601 ◽  
Author(s):  
K.B. Hamzah ◽  
N.M.A. Nik Long ◽  
N. Senu ◽  
Z.K. Eshkuvatov

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hongfen Gao ◽  
Gaofeng Wei

This paper describes the application of the complex variable meshless manifold method (CVMMM) to stress intensity factor analyses of structures containing interface cracks between dissimilar materials. A discontinuous function and the near-tip asymptotic displacement functions are added to the CVMMM approximation using the framework of complex variable moving least-squares (CVMLS) approximation. This enables the domain to be modeled by CVMMM without explicitly meshing the crack surfaces. The enriched crack-tip functions are chosen as those that span the asymptotic displacement fields for an interfacial crack. The complex stress intensity factors for bimaterial interfacial cracks were numerically evaluated using the method. Good agreement between the numerical results and the reference solutions for benchmark interfacial crack problems is realized.


2019 ◽  
Vol 1298 ◽  
pp. 012021
Author(s):  
K B Hamzah ◽  
N M A NikLong ◽  
N Senu ◽  
Z K Eshkuvatov

Author(s):  
Shao-Huan Cheng ◽  
C. T. Sun

Stress intensity factor is one of the most significant fracture parameters in linear elastic fracture mechanics (LEFM). Due to its simplicity, many researchers directly employed this concept to explain their results from molecular simulation. However, stress intensity factor defines the amplitude of the singular stress, which is the product of continuum elasticity. Under atomistic systems without the stress singularity, the concept of stress intensity factor must be examined. In addition, the difficulty of studying the stress intensity factor in atomistic systems may be traced back to the ambiguous definition of the local atomistic stress. In this study, the definition of the local virial stress is adopted. Subsequently, through the consideration of K-dominance, the approximated stress intensity factor based on the atomistic stress can be projected within a reasonable region. Moreover, the influence of cutting interatomic bonds to create traction free crack surfaces and the critical stress intensity factor is also discussed.


Sign in / Sign up

Export Citation Format

Share Document