410 Numerical Study on the Stability of Solitary Waves

2008 ◽  
Vol 2008.83 (0) ◽  
pp. _4-10_
Author(s):  
Hideyuki ISHIZAWA ◽  
Takeshi KATAOKA
2007 ◽  
Vol 17 (6) ◽  
pp. 569-607 ◽  
Author(s):  
V. A. Dougalis ◽  
A. Durán ◽  
M. A. López-Marcos ◽  
D. E. Mitsotakis

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1398
Author(s):  
Natalia Kolkovska ◽  
Milena Dimova ◽  
Nikolai Kutev

We consider the orbital stability of solitary waves to the double dispersion equation utt−uxx+h1uxxxx−h2uttxx+f(u)xx=0,h1>0,h2>0 with combined power-type nonlinearity f(u)=a|u|pu+b|u|2pu,p>0,a∈R,b∈R,b≠0. The stability of solitary waves with velocity c, c2<1 is proved by means of the Grillakis, Shatah, and Strauss abstract theory and the convexity of the function d(c), related to some conservation laws. We derive explicit analytical formulas for the function d(c) and its second derivative for quadratic-cubic nonlinearity f(u)=au2+bu3 and parameters b>0, c2∈0,min1,h1h2. As a consequence, the orbital stability of solitary waves is analyzed depending on the parameters of the problem. Well-known results are generalized in the case of a single cubic nonlinearity f(u)=bu3.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dali Guo ◽  
Bo Tao ◽  
Xiaohui Zeng

The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.


2020 ◽  
Author(s):  
VA Dougalis ◽  
A Duran ◽  
Dimitrios Mitsotakis

© 2018 Elsevier B.V. This paper is concerned with the study, by computational means, of the generation and stability of solitary-wave solutions of generalized versions of the Benjamin equation. The numerical generation of the solitary-wave profiles is accurately performed with a modified Petviashvili method which includes extrapolation to accelerate the convergence. In order to study the dynamics of the solitary waves the equations are discretized in space with a Fourier pseudospectral collocation method and a fourth-order, diagonally implicit Runge–Kutta method of composition type as time-stepping integrator. The stability of the waves is numerically studied by performing experiments with small and large perturbations of the solitary pulses as well as interactions of solitary waves.


1986 ◽  
Vol 29 (3) ◽  
pp. 650 ◽  
Author(s):  
Mitsuhiro Tanaka

The Korteweg-de Vries equation, which describes the unidirectional propagation of long waves in a wide class of nonlinear dispersive systems, is well known to have solutions representing solitary waves. The present analysis establishes that these solutions are stable, confirming a property that has for a long time been presumed. The demonstration of stability hinges on two nonlinear functionals which for solutions of the Korteweg-de Vries equation are invariant with time: these are introduced in § 2, where it is recalled that Boussinesq recognized their significance in relation to the stability of solitary waves. The principles upon which the stability theory is based are explained in § 3, being supported by a few elementary ideas from functional analysis. A proof that solitary wave solutions are stable is completed in § 4, the most exacting steps of which are accomplished by means of spectral theory. In appendix A a method deriving from the calculus of variations is presented, whereby results needed for the proof of stability may be obtained independently of spectral theory as used in § 4. In appendix B it is shown how the stability analysis may readily be adapted to solitary-wave solutions of the ‘regularized long-wave equation’ that has recently been advocated by Benjamin, Bona & Mahony as an alternative to the Korteweg-de Vries equation. In appendix C a variational principle is demonstrated relating to the exact boundaryvalue problem for solitary waves in water: this is a counterpart to a principle used in the present work (introduced in §2) and offers some prospect of proving the stability of exact solitary waves.


Sign in / Sign up

Export Citation Format

Share Document