ostrovsky equation
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 29)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 63 ◽  
pp. 103395
Author(s):  
Amin Esfahani ◽  
Steven Levandosky

Water Waves ◽  
2022 ◽  
Author(s):  
Bhavna ◽  
Atul Kumar ◽  
Ashish Kumar Pandey

2022 ◽  
Author(s):  
R. Ivanov

Abstract. A derivation of the Ostrovsky equation for internal waves with methods of the Hamiltonian water wave dynamics is presented. The internal wave formed at a pycnocline or thermocline in the ocean is influenced by the Coriolis force of the Earth's rotation. The Ostrovsky equation arises in the long waves and small amplitude approximation and for certain geophysical scales of the physical variables.


Author(s):  
Mohamed Omri ◽  
Abdel-Haleem Abdel-Aty ◽  
S. Abdel-Khalek ◽  
E.M. Khalil ◽  
Mostafa M.A. Khater

2021 ◽  
pp. 2150477
Author(s):  
Serbay Duran ◽  
Asif Yokuş ◽  
Hülya Durur

In this study, we have taken into account the time-fractional Ostrovsky–Benjamin–Bona–Mahony equation, which is a synthesis of the time-fractional Ostrovsky equation and time-fractional Benjamin–Bona–Mahony equations and contains both mathematical and physical properties. Traveling wave solutions are produced by using the Ostrovsky–Benjamin–Bona–Mahony equation that physically sheds light on the incoming wave event on the ocean surface, using the sub-equation and Bernoulli sub-equation function methods. These solutions are presented in hyperbolic, trigonometric, singular and dark (topological) soliton types. With the help of special values given to the coefficients in the solitons obtained, it is associated with the solutions in the literature and it is observed that the solitons produced in this study are more general. Graphs representing the stationary wave at any given moment are presented. The advantages and disadvantages as well as the similarities and differences of the method are discussed in detail. Also, the behavior of the wave and its refraction according to the velocity variable, which is a physically important factor of the traveling wave solution, is analyzed and supported by simulation.


Author(s):  
Sol Sáez

In this work we consider a generalized Ostrovsky equation depending on two arbitrary functions and we make an in-depth study of this equation. We obtain the Lie symmetries which are admitted by this equation and some exact solutions as a periodic or solitary waves, obtained through ordinary and partial differential equations. Also, by means of the concept of multiplier, we obtain a wide range of conservation laws which preserve properties of the generalized Ostrovsky equation.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 123
Author(s):  
P. Veeresha ◽  
Haci Mehmet Baskonus ◽  
Wei Gao

The main objective of the present study is to analyze the nature and capture the corresponding consequences of the solution obtained for the Gardner–Ostrovsky equation with the help of the q-homotopy analysis transform technique (q-HATT). In the rotating ocean, the considered equations exemplify strong interacting internal waves. The fractional operator employed in the present study is used in order to illustrate its importance in generalizing the models associated with kernel singular. The fixed-point theorem and the Banach space are considered to present the existence and uniqueness within the frame of the Caputo–Fabrizio (CF) fractional operator. Furthermore, for different fractional orders, the nature has been captured in plots. The realized consequences confirm that the considered procedure is reliable and highly methodical for investigating the consequences related to the nonlinear models of both integer and fractional order.


Sign in / Sign up

Export Citation Format

Share Document