718 Application of composite materials to sliding guideways of machine tools

2001 ◽  
Vol 2001.7 (0) ◽  
pp. 51-52
Author(s):  
Yuichiro AKITA ◽  
Tojiro Aoyama ◽  
Mizue Fukushima
2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Kory Chang ◽  
Masakazu Soshi

Sliding guideways are often used as the foundation for linear motion in computer numerical control (CNC) machine tools due to their high damping capabilities especially for heavy duty machining applications. However, the traditional manufacturing process with grinding is time-consuming, and the product’s sliding performance has not been optimized nor clearly understood. In order to increase productivity, a machining center based manufacturing method with cubic boron nitride (CBN) milling tools was introduced and tested by researchers. While greatly reducing manufacturing time and cost, a rougher milled surface, in comparison to traditional grinding, is a possible concern for the performance as well as the life of sliding guideways. In this study, a novel planar honing process was proposed as a postprocess of CBN milling to create a finish surface on hardened cast iron sliding guideways used for CNC machine tools. A design of experiment (DOE) was conducted to statistically understand significant factors in the machining process and their relationship with surface topography. Effective planar honing conditions were discovered and analyzed with three-dimensional (3D) and two-dimensional surface parameters.


1985 ◽  
Vol 21 (1) ◽  
pp. 28-31
Author(s):  
K. M. Badyshtova ◽  
V. V. Fedorov ◽  
V. A. Kosova ◽  
A. S. Lapidus

2018 ◽  
Vol 37 (24) ◽  
pp. 1456-1467 ◽  
Author(s):  
S Murugan ◽  
PR Thyla

Machine tool structures find large-scale applications in various machining industries due to their necessity to design several kinds of machines. However, the vibration produced on machining is a significant problem which has to be overcome. To suppress the vibration, several researchers have attempted to enhance the machine tool structure’s dynamic characteristics in the recent past. The composite materials have risen up as a new kind of material for the manufacture of machine tool structures with producing lesser vibrations since the past few decades. To increase the production of precision products, machining should be done at high speeds without producing vibration. The dynamic characteristics such as natural frequency as well as damping of machine tool structures are very important parameters. Hence, the improvement of these parameters is nothing but the improvement of dynamic characteristics, as said earlier. Therefore, the present review elaborates various available reports on the improved dynamic characteristics of machine tools. The review focused mainly on mechanical and dynamic properties of alternate materials for machine tools with different composite materials. Furthermore, conflicting conditions of suitable alternate material for the preparation of machine tools are also focused in the present review. To the best of our knowledge, the review on the use of alternate materials for the manufacturing of machine tool structures has not been reported elsewhere and hence the present review will provide useful information for subsequent researchers to enhance the scope of research work in the area of manufacturing machine tool structures.


Author(s):  
R.R. Russell

Transmission electron microscopy of metallic/intermetallic composite materials is most challenging since the microscopist typically has great difficulty preparing specimens with uniform electron thin areas in adjacent phases. The application of ion milling for thinning foils from such materials has been quite effective. Although composite specimens prepared by ion milling have yielded much microstructural information, this technique has some inherent drawbacks such as the possible generation of ion damage near sample surfaces.


Author(s):  
C. W. McCutchen ◽  
Lois W. Tice

Ultramicrotomists live in a state of guerilla warfare with chatter. This situation is likely to be permanent. We can infer this from the history of machine tools. If set the wrong way for the particular combination of cutting tool and material, most if not all machine tools will chatter.In more than 100 years since machine tools became common, no one has evolved a practical recipe that guarantees avoiding chatter. Rather than follow some single very conservative rule to avoid chatter in all cases, machinists detect it when it happens, and change conditions until it stops. This is possible because they have no trouble telling when their cutting tool is chattering. They can see chatter marks, and they can also hear a sometimes deafening noise.


Sign in / Sign up

Export Citation Format

Share Document