K-0811 Evaluation on Fatigue Crack Growth Rate of Carbon Steel Piping in Simulated LWR Water Environment

2001 ◽  
Vol I.01.1 (0) ◽  
pp. 401-402
Author(s):  
Katsumi HOSAKA ◽  
Masakazu YOSHINO ◽  
Masahiro OTAKA ◽  
Yasuhide ASADA
Author(s):  
Hardayal S. Mehta

When in-service inspection of a nuclear plant component reveals the presence of cracking, an engineering evaluation (typically called a justification for continued operation, or JCO) is required to demonstrate the structural suitability for continued operation. A key element in such a flaw evaluation is the projected crack growth over the period when the cracked component will be reinspected. The crack growth is expected to be a combination of stress corrosion cracking (SCC) and corrosion fatigue. The ASME Section XI Code is in the process of developing a full range of SCC and corrosion fatigue crack growth rate relationships (CGRs) for stainless steel and Ni-Cr-Fe materials. The objective of this paper is to summarize several available SCC and fatigue crack growth rate relationships for these materials exposed to boiling water reactor (BWR) water environments. For completeness, low alloy steel SCC and corrosion fatigue CGRs in BWR water environment are also briefly reviewed. Two example evaluations are provided that used some of these CGRs in developing the JCOs for BWR components. A detailed comparison of these CGRs along with a review of the underlying data will be part of a future effort undertaken by the ASME Section XI Task Group.


Author(s):  
Yuichiro Nomura ◽  
Hiroshi Kanasaki

Reference fatigue crack growth rate (FCGR) curves for ferrite and austenitic stainless steels in light water reactors environments are prescribed in JSME S NA1-2004 in Japan. The reference FCGR curves in the environment in pressurized water reactors (PWR) are determined as functions of the stress intensity factor range, temperature, load rising time and stress ratio. However, similar reference FCGR curve for nickel-based alloys for PWR environment are not prescribed. In order to propose reference curve in PWR environment, fatigue tests of nickel-based alloys in a simulated PWR primary water environment were conducted. The results of the study show that FCGR in a PWR primary water environment increases with decreasing cyclic loading frequency f, increasing stress ratio R, and increasing temperature Tc.


Author(s):  
Takuya Ogawa ◽  
Masao Itatani ◽  
Toshiyuki Saito ◽  
Hiroshi Nagase ◽  
Satoru Aoike ◽  
...  

When the flaws are detected in Japanese nuclear power components by in-service inspection, structural integrity assessment are performed in the technical judgment on continuous service. If cyclic loading is assumed, fatigue crack growth analysis should be conducted based on the Rules on Fitness-for-Service for Nuclear Power Plants of the Japan Society of Mechanical Engineers Code (JSME FFS Code). However, fatigue crack growth analysis for BWR components consisting of Ni-base alloy is currently impossible, since the reference curve of fatigue crack growth rate for Ni-base alloy in BWR water environment is not yet prescribed in the JSME FFS Code. In this study, fatigue crack growth behavior of Ni-base alloy used for Japanese BWR plants in BWR water environment was investigated. Based on the experimental data, the fatigue crack growth rate curve was evaluated. Four test parameters of material, corrosion potential, stress ratio and load rising time were considered. As a result of fatigue crack growth tests, the effects of all test parameters on the fatigue crack growth behavior were found. A Mean curve of fatigue crack growth rate in Paris law format, which was a function of stress ratio and rising time, was formulated based on crack growth data in normal water chemistry (corrosion potential was over 150 mVSHE) for weld metal and heat affected zone (HAZ), respectively. A reference curve of fatigue crack growth rate was also formulated by the statistical treatment considering the scatter of crack growth rate. Further, in order to determine the threshold stress intensity factor range ΔKth of reference curve of fatigue crack growth, ΔK decreasing tests were conducted under the test condition of 1 second of rising time. As a result, the threshold value of ΔK was evaluated based on the ASTM E 647, and the ΔKth of the reference curve was conservatively determined considering the margin.


Sign in / Sign up

Export Citation Format

Share Document