Fatigue Crack Growth Rate for Nickel-Based Alloys in PWR Environment

Author(s):  
Yuichiro Nomura ◽  
Hiroshi Kanasaki

Reference fatigue crack growth rate (FCGR) curves for ferrite and austenitic stainless steels in light water reactors environments are prescribed in JSME S NA1-2004 in Japan. The reference FCGR curves in the environment in pressurized water reactors (PWR) are determined as functions of the stress intensity factor range, temperature, load rising time and stress ratio. However, similar reference FCGR curve for nickel-based alloys for PWR environment are not prescribed. In order to propose reference curve in PWR environment, fatigue tests of nickel-based alloys in a simulated PWR primary water environment were conducted. The results of the study show that FCGR in a PWR primary water environment increases with decreasing cyclic loading frequency f, increasing stress ratio R, and increasing temperature Tc.

Author(s):  
Hardayal S. Mehta

When in-service inspection of a nuclear plant component reveals the presence of cracking, an engineering evaluation (typically called a justification for continued operation, or JCO) is required to demonstrate the structural suitability for continued operation. A key element in such a flaw evaluation is the projected crack growth over the period when the cracked component will be reinspected. The crack growth is expected to be a combination of stress corrosion cracking (SCC) and corrosion fatigue. The ASME Section XI Code is in the process of developing a full range of SCC and corrosion fatigue crack growth rate relationships (CGRs) for stainless steel and Ni-Cr-Fe materials. The objective of this paper is to summarize several available SCC and fatigue crack growth rate relationships for these materials exposed to boiling water reactor (BWR) water environments. For completeness, low alloy steel SCC and corrosion fatigue CGRs in BWR water environment are also briefly reviewed. Two example evaluations are provided that used some of these CGRs in developing the JCOs for BWR components. A detailed comparison of these CGRs along with a review of the underlying data will be part of a future effort undertaken by the ASME Section XI Task Group.


2000 ◽  
Vol 123 (2) ◽  
pp. 166-172 ◽  
Author(s):  
M. Itatani ◽  
M. Asano ◽  
M. Kikuchi ◽  
S. Suzuki ◽  
K. Iida,

Fatigue crack growth data obtained in the simulated BWR water environment were analyzed to establish a formula for reference fatigue crack growth rate (FCGR) of austenitic stainless steels in BWR water. The effects of material, mechanical and environmental factors were taken into the reference curve, which was expressed as: da/dN=8.17×10−12s˙Tr0.5s˙ΔK3.0/1−R2.121≦ΔK≦50 MPam where da/dN is fatigue crack growth rate in m/cycle, Tr is load rising time in seconds, ΔK is range (double amplitude) of K–value in MPam, and R is stress ratio. Tr=1 s if Tr<1 s, and Tr=1000 s if Tr cannot be defined. ΔK=Kmax−Kmin if R≧0.ΔK=Kmax if R<0.R=Kmin/Kmax. The proposed formula provides conservative FCGR at low stress ratio. Although only a few data show higher FCGR than that by proposed formula at high R, these data are located in a wide scatter range of FCGR and are regarded to be invalid. The proposed formula is going to be introduced in the Japanese Plant Operation and Maintenance Standard.


Author(s):  
J. C. Le Roux ◽  
F. Hasnaoui

The aim of this work is to study the effect of the overload on the fatigue crack growth rate properties of a low alloyed steel used for rotor disk. On one hand, experimental fatigue tests during which a single overload event is applied are performed on CT specimens. Different loading conditions are imposed in order to study the effects of these parameters on the retardation of the fatigue crack due to the overload. On the other hand, two dimensions elastic plastic Finite Element calculations of crack propagation using nodes release method were used to estimate the effects of a single overload event on the fatigue crack growth rate. Different loading conditions, as for the experimental tests, are used in order to study numerically the effects of these parameters on the retardation of the fatigue crack due to the overload. The experimental and numerical results show the decrease of the crack growth rate due to the overload. This decrease depends on different parameters as overload ratio, stress ratio used for the constant amplitude cyclic loading and ΔK at which the overload is applied. From experimental test results, it can be observed that the decrease is as significant as the overload ratio is high, and as the ΔK at which overload is applied and stress ratio are low. Numerical results show similarities with experimental results, for instance the decrease of the fatigue crack growth is linked to the increase of the overload ratio or to the decrease to the ΔK at which overload is applied. Differences are also observed i.e. the increase of the stress ratio seems to increase the effect of the overload in the numerical calculations in contrary of the experimental results. By comparing to the numerical results, the quality of the results obtained from simplified models has been assessed in regard of the overload effect. A modified Kim and al. model seems to be representative of the different effects of the overload on the fatigue crack growth rate. The future work to be done consists to improve the comparison between experimental and numerical studies.


Sign in / Sign up

Export Citation Format

Share Document