low carbon steel
Recently Published Documents


TOTAL DOCUMENTS

4730
(FIVE YEARS 1044)

H-INDEX

72
(FIVE YEARS 11)

2022 ◽  
Vol 35 (2) ◽  
Author(s):  
Blake C. Stewart ◽  
Haley R. Doude ◽  
Terry L. Taylor ◽  
Morgan B. Abney ◽  
Hongjoo Rhee

2022 ◽  
Vol 210 ◽  
pp. 114467
Author(s):  
Wanglin Chen ◽  
Yonghao Huang ◽  
Hui Xiao ◽  
Xianna Meng ◽  
Zhe Li ◽  
...  

Author(s):  
Shivani Parmar

Abstract: Welding is an enormously essential manufacturing technique which allows the users to create permanent joints efficiently, due to its durability this process is extensively used in various industries like automotive, construction as well as in the aviation industry. The present study focuses on the optimization of the Metal Arc Welding using VIKOR method. Four input variables Current, Voltage, Wire Feed Rate and Gas Flow Rate are considered to study their effect on three responses tensile, bending and hardness on the weldments of AISI 1008 low carbon steel material. Experiments were planned as per Taguchi‘s L9 OA. As traditional Taguchi method is not adequate to solve multi responses problem, to overcome this limitation MCDM approach VIKOR analysis has been carried out for obtaining optimal parameters setting for multi-response optimization. Three specimens (for tensile, bending, and hardness) for each experimental run are fabricated for the measurement of respective strength and hardness. Investigation is done by following the steps of VIKOR method, and optimal parameter setting for multi quality response is obtained corresponding to the lower VIKOR index value. Keywords: Metal Inert Gas (MIG) Welding, VIKOR, S/N ratio, ANOVA


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 147
Author(s):  
Sixtos Antonio Arreola-Villa ◽  
Héctor Javier Vergara-Hernández ◽  
Gildardo Solorio-Diáz ◽  
Alejandro Pérez-Alvarado ◽  
Octavio Vázquez-Gómez ◽  
...  

High-temperature surface oxidation kinetics were determined for low-carbon steel using a Joule heating device on hollow cylindrical specimens. The growth of the oxide layer was measured in situ between 800 and 1050 ∘C under isothermal oxidation conditions and in an air laboratory atmosphere (O2 = 20.3% and humidity = 42%). Through a laser and infrared measuring system, the expansion and temperature were measured continuously. From the data acquired, the oxidation kinetic parameters were obtained at different temperatures with a parabolic-type growth model to estimate the rate of oxide layer generation. The convergence degree of the data fitted with the oxidation model was acceptable and appropriately correlated with the experimental data. Finally, comparisons were made between the estimated kinetic parameters and those reported in the literature, observing that the activation energy values obtained are in the range of the reported values.


Author(s):  
Yunliang Huo ◽  
Ji Xiong ◽  
Yu Ze ◽  
Sitao Chen ◽  
Zhixing Guo

Tool selection is a multi-criteria decision-making problem in the presence of various selection criteria and a set of alternatives, but previous works are limited to evaluating the tools within the workshop tool library. To intelligently select proper inserts across suppliers under the Internet environment, an insert data format based on ISO 513 was established, and a framework was then designed to obtain a set of alternatives from different suppliers based on fuzzy intervals. Then, knowledge was described with convenient language and the simple membership function to build an intelligent system, which would infer the matching degree of insert characteristics to the machining conditions. Furthermore, analytic hierarchy process was applied to sort the alternatives. Finally, the case study shows that compared with previous works and machinists, this work not only obtains a set of alternatives from all suppliers who uploaded their product data with the designed format but comprehensively evaluates the insert (take finishing low-carbon steel as an example, both cemented carbide and cermet are recommended, the nose radius reduces 25%, the environmental index increases 25%, while the rake reduces 11.25%, when compared with machinists who tend to select the larger rake angle foe finishing). A platform was also developed based on Visual Studio 2015 and SQL Server 2012 to improve selection efficiency for inexperienced CNC operators, purchasers, and vendors.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 115
Author(s):  
Tao Xu ◽  
Zhiyi Pan ◽  
Bo Gao ◽  
Jiaxi Huang ◽  
Xuefei Chen ◽  
...  

Warm rolling at temperatures ranging from 25 °C to 500 °C was conducted on the dual-phase heterostructured low-carbon steel to investigate the effect of deformation temperature on the structural refinement and mechanical properties. Defying our intuition, the grain size and strength of the rolled steels do not deteriorate with the increase in deformation temperature. Warm rolling at 300 °C produces a much finer lamellar structure and higher strength than steels rolled at both room temperature and elevated temperature. It is supposed that the enhanced interactions between carbon atoms and defects (interfaces and dislocations) at 300 °C promote dislocation accumulation and stabilize the nanostructure, thus helping with producing an extremely finer structure and higher strength than other temperatures.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 374
Author(s):  
Jaroslaw Jan Jasinski ◽  
Michal Tagowski

Riveted joints are a common way to connect elements and subassemblies in the automotive industry. In the assembly process, tubular rivets are loaded axially with ca. 3 kN forces, and these loads can cause cracks and delamination in the rivet material. Such effects at the quality control stage disqualify the product in further assembly process. The article presents an analysis of the fracture mechanism of E215 low-carbon steel tubular rivets used to join modules of driver and passenger safety systems (airbags) in vehicles. Finite element method (FEM) simulation and material testing were used to verify the stresses and analysis of the rivet fracture. Numerical tests determined the state of stress during rivet forming using the FEM-EA method based on the explicit integration of central differences. Light microscopy (LM), scanning electron microscopy (SEM) and chemical composition analysis (SEM-EDS) were performed to investigate the microstructure of the rivet material and to analyze the cracks. Results showed that the cause of rivet cracking is the accumulation and exceeding of critical tensile stresses in the rivet flange during the tube processing and the final riveting (forming) process. Moreover, it was discovered that rivet fracture is largely caused by structural defects (tertiary cementite Fe,Mn3CIII along the boundaries of prior austenite grains) in the material resulting from the incorrectly selected parameters of the final heat treatment of the prefabricate (tube) from which the rivet was produced. The FEM simulation of the riveting and structural characterization results correlated well, so the rivet forming process and fracture mechanism could be fully investigated.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Zhirui Wei ◽  
Haijiang Hu ◽  
Man Liu ◽  
Junyu Tian ◽  
Guang Xu

The microstructure and wear performance of a low-carbon steel treated by austempering below and above martensite start temperature (Ms) were investigated. The results show that the bainite, fresh martensite (FM) and retained austenite (RA) were observed in samples austempered above Ms. Except for the three above phases, the athermal martensite (AM) was also observed in samples austempered below Ms. The bainite transformation was accelerated and finer bainite was obtained due to the AM formation in samples austempered below Ms. In addition, the strength and hardness were improved with the decrease of the isothermal temperature and time, whereas the total elongation decreased with the increasing isothermal time and the decreasing isothermal temperature. Moreover, the materials austempered below Ms exhibited better wear performance than the ones treated above Ms, which is attributed to the improved impact toughness by the finer bainite and the enhanced hardness by AM. The best wear resistance was obtained in the samples austempered at 300 °C below Ms for 200 s, due to the highest hardness and considerable impact toughness.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 342
Author(s):  
Zoran Bergant ◽  
Barbara Šetina Batič ◽  
Imre Felde ◽  
Roman Šturm ◽  
Marko Sedlaček

NiCrBSi, WC-12Co and NiCrBSi with 30, 40 and 50 wt.% WC-12Co coatings were produced on low carbon steel by laser cladding with an Nd:YAG laser with a multi-jet coaxial cladding-nozzle. The microstructure properties after WC-12Co alloying were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and Vickers hardness tests. The resulting microstructures consisted of a γ-Ni and Ni3B matrix, strengthened with Co and W, Ni3Si, CrB, Cr7C3, Cr23C6, WC/W2C phases. In coatings with 30, 40 and 50 wt.% WC-12Co, a solid solution, strengthened multi-matrix NiCrWCo phase formed, which yielded a higher matrix hardness. Wear tests that monitored the friction coefficients were performed with a tribometer that contained a ball-on-disc configuration, Al2O3 counter-body and reciprocal sliding mode at room temperature. The major wear mode on the NiCrBSi coatings without the WC-12Co was adhesive with a high wear rate and visible material loss by flaking, delamination and micro-ploughing. The addition of WC-12Co to the NiCrBSi coating significantly increased the wear resistance and changed the major wear mechanism from adhesion to three-body abrasion and fatigue wear.


Sign in / Sign up

Export Citation Format

Share Document