GS0808 Finite Element Analysis of the Fatigue Strength of Threaded Fasteners Using Helical Thread Models

2008 ◽  
Vol 2008 (0) ◽  
pp. _GS0808-1_-_GS0808-2_
Author(s):  
TAKASHI Fuchikami ◽  
Toshimichi FUKUOKA ◽  
Masataka NOMURA
2015 ◽  
Vol 723 ◽  
pp. 96-99
Author(s):  
Xiao Wei Wang ◽  
Mao Xiang Lang

The vice frame bears and transfers the forces and loads between the bogie and the vehicle body.The strength of the vice frame relates directly to the stability and smoothness of the vehicle. In this study, finite element analysis is utilized first to analyse the structural strength and fatigue life of the vice frame, and the recognize the weak parts of its structure in order to enhance its structural strength in the following design work.The finite element analysis is performed on a simulation software Ansys. Then an experiment is designed to test the fatigue strength of the vice frame. The experimental result indicates that the fatigue strength of the object corresponds to the standards and the finite element analysis has high feasibility in solving this kind of problem.


Author(s):  
Yuya Omiya ◽  
Tadatoshi Watanabe ◽  
Masahiro Fujii ◽  
Haruka Yamamoto

In this study, the creep deformation in the threaded joint are discussed using a finite element method, and evaluated the influence of the dimensions of bolt and clamped parts. The stress and creep strain distributions are calculated using the Finite Element Analysis. The occurrence and the propagation of the creep deformation and influence of the creep deformation on the axial bolt force were discussed. It was found that the creep deformation occurred at the bearing surfaces and the engagement screw thread mainly at the elevated temperature. The creep deformation was a cause of the reduction in axial bolt force.


2013 ◽  
Vol 740 ◽  
pp. 319-322 ◽  
Author(s):  
Young Choon Lee ◽  
Nam Jin Jeon ◽  
Cheol Kim ◽  
Seo Yeon Ahn ◽  
Myung Jae Cho

Finite element analysis was accomplished for a steering knuckle component of a small bus to see whether the static and fatigue strength requirements were satisfied or not. The knuckle was modeled with ANSYS 10-node quadratic elements. The cyclic fatigue load was applied and Soderberg criteria were applied to check the fatigue life. The knuckle structure has an infinite life (10-6 cycle) judging from the fatigue analyses. Shape optimization based on the gradient based method has been performed in order to find out the knuckle shape that has a minimum weight and satisfies the static and fatigue strength requirements. As a result of shape optimization, the weight of the steering knuckle was reduced 8%.


2019 ◽  
Vol 13 (2) ◽  
pp. 5048-5073
Author(s):  
Brahami Riad ◽  
Hamri Okba ◽  
Sfarni Samir

This article presents a study of the fatigue strength of welded parts in a crane boom. First, a finite element analysis was carried out over the whole structure. Two critical welded zones were identified and a detailed analysis was carried on them, in the form of sub-models. Three different approaches for estimating the structural stress in welded zones, were presented and applied to each sub-model. Results were compared and discussed. The evaluation of fatigue resistance by the use of appropriate S-N curves for each method was also carried out and discussed. The use of these approaches on a complex industrial structure, and on tubular joints with hollow sections required to perform many adaptations and to solve several difficulties presented hereafter.


Sign in / Sign up

Export Citation Format

Share Document