1303 In Vivo Estimation of Human Tibiotalar Joint Contact Area Using MRI

2010 ◽  
Vol 2010 (0) ◽  
pp. 354-355
Author(s):  
Makoto SAKAMOTO ◽  
Keisuke SASAGAWA ◽  
Yuji TANABE ◽  
Koichi KOBAYASHI
Author(s):  
Makoto SAKAMOTO ◽  
Ryota MAKIOKA ◽  
Keisuke SASAGAWA ◽  
Yuji TANABE ◽  
Hidenori YOSHIDA ◽  
...  

2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0025
Author(s):  
Zhao Hong-Mou

Category: Ankle; Basic Sciences/Biologics Introduction/Purpose: To study the effect of different degrees of distal tibial varus and valgus deformities on the tibiotalar joint contact, and to understand the role of fibular osteotomy. Methods: Eight cadaveric lower legs were used for biomechanical study. Nine conditions were included: normal ankle joint (group A), 10° varus (group B), 5° varus (group C), 5° valgus (group D), 10° valgus (group E) with fibular preserved, and 10° varus (group F), 5° varus (group G), 5° valgus (group H), and 10° valgus (group I) after fibular osteotomy. The joint contact area, contact pressure, and peak pressure were tested; and the translation of contact force center was observed. Results: The joint contact area, contact pressure, and peak pressure had no significant difference between group A and groups B to E (P>0.05). After fibular osteotomy, the contact area decreased significantly in groups F and I when compared with group A (P<0.05); the contact pressure increased significantly in groups F, H, and I when compared with group A (P<0.05); the peak pressure increased significantly in groups F and I when compared with group A (P<0.05). There were two main anterior-lateral and anterior-medial contact centers in normal tibiotalar joint, respectively; and the force center was in anterior-lateral part, just near the center of tibiotalar joint. While the fibula was preserved, the force center transferred laterally with increased varus angles; and the force center transferred medially with increased valgus angles. However, the force center transferred oppositely to the medial part with increased varus angles, and laterally with increased valgus angles after fibular osteotomy. Conclusion: Fibular osteotomy facilitates the tibiotalar contact pressure translation, and is helpful for ankle joint realignment in suitable cases.


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0028
Author(s):  
Ansab M. Khwaja ◽  
Alfonso E. Ayala ◽  
Brianna Goodison ◽  
Jared Irwin ◽  
L. Daniel Latt

Category: Basic Sciences/Biologics; Ankle; Hindfoot; Trauma Introduction/Purpose: Decreased tibiotalar joint contact area (CA) and increased peak pressure (PP) following rotational ankle fractures may predispose the development of post-traumatic osteoarthritis. Previous studies have highlighted the effects of lateral talar translation on tibiotalar joint congruity. However, debate remains regarding surgical indications in minimally displaced (< 2mm of clear space widening), but potentially malrotated ankle fractures. Malrotation of the talus and fibula are poorly visualized on plain radiographs, thus their impact on ankle joint contact mechanics has not been determined. The aim of this project is to understand the effects of fibular malrotation on tibiotalar joint CA and PP distributions using an axially loaded cadaveric model. We hypothesized that fibular malrotation would result in decreased contact area and increased peak pressures within the tibiotalar joint. Methods: Ten fresh frozen cadaveric lower extremity specimens transected mid-tibia were dissected free of soft tissues surrounding the ankle, sparing the ligaments. The proximal tibia and fibula were potted in quick drying cement for rigid mounting on a MTS machine. A pressure sensing element (TekScan model 5033) was inserted into the tibiotalar joint and used to measure CA (cm2) and PP (MPa). An axial load of 686 N was applied through the tibia and fibula, followed by a 147 N load via the Achillies tendon at mid-stance position, 15o dorsiflexion and 15o plantarflexion. The samples were first tested in the native condition, a Weber B ankle fracture was simulated and then re-tested in an anatomically fixed state, and a malrotated state. Malrotation was achieved by externally rotating the talus and shortening the fibula along the fracture by the maximal amount that would allow bony apposition along the fracture line (usually 5-10mm). Results: In the six ankles tested thus far (Figure 1), we have observed small but statistically insignificant (P>0.05) increases in tibiotalar CA at all stance phases following malreduction. Significant (p>0.05) increases in tibiotalar PP were seen mid-stance following a simulated Weber B fracture, and these changes were shown to be greatest in the malreduced state versus the anatomically fixed state (7.21 MPa vs. 6.35 MPa respectively, p = 0.004). Interestingly, similar (p=0.84) decreases tibiotalar PP were shown during plantarflexion following a simulated Weber B fracture fixed in both the anatomically fixed and malreduced state. Conclusion: Our preliminary data supports the notion that significant changes in tibiotalar PP occur following ankle fractures even in an anatomically fixed state. Increases in tibiotalar PP seem to be further amplified following malreduction at specific stance phases. Further data collection is needed to validate these findings, and to determine the role of malrotation as a potential surgical indication for minimally laterally displaced ankle fractures.


Author(s):  
Yosei NODAGUCHI ◽  
Ryota MAKIOKA ◽  
Hidenori YOSHIDA ◽  
Yuji TANABE ◽  
Koichi KOBAYASHI ◽  
...  

2011 ◽  
Vol 32 (11) ◽  
pp. 1017-1022 ◽  
Author(s):  
Masamitsu Kido ◽  
Kazuya Ikoma ◽  
Kan Imai ◽  
Masahiro Maki ◽  
Ryota Takatori ◽  
...  

Background: The objective of this study was to evaluate the bone rotation of each joint in the hindfoot and compare the load response in healthy feet with that in flatfeet by analyzing the reconstructive three-dimensional (3D) CT image data during weightbearing. Methods: CT scans of 21 healthy feet and 21 feet with flatfoot deformity were taken in non-load condition followed by full-body weightbearing load condition. The images of the hindfoot bones were reconstructed into 3D models. The volume merge method in three planes was used to calculate the position of the talus relative to the tibia in the tibiotalar joint, the navicular relative to the talus in talonavicular joint, and the calcaneus relative to the talus in the talocalcaneal joint. Results: The talar position difference to the load response relative to the tibia in the tibiotalar joint in a flatfoot was 1.7 degrees more plantarflexed in comparison to that in a healthy foot ( p = 0.031). The navicular position difference to the load response relative to the talus in the talonavicular joint was 2.3 degrees more everted ( p = 0.0034). The calcaneal position difference to the load response relative to the talus in the talocalcaneal joint was 1.1 degrees more dorsiflexed ( p = 0.0060) and 1.7 degrees more everted ( p = 0.0018). Conclusion: Referring to previous cadaver study, regarding not only the cadaveric foot, but also the live foot, joint instability occurred in the hindfoot with load in patients with flatfoot. Clinical Relevance: The method used in this study might be applied to clinical analysis of foot diseases such as the staging of flatfoot and to biomechanical analysis to evaluate the effects of foot surgery in the future. Level of Evidence: III


1997 ◽  
Vol 18 (12) ◽  
pp. 792-797 ◽  
Author(s):  
Jennifer S. Wayne ◽  
Keith W. Lawhorn ◽  
Kenneth E. Davis ◽  
Karanvir Prakash ◽  
Robert S. Adelaar

Contact areas and peak pressures in the posterior facet of the subtalar and the talonavicular joints were measured in cadaver lower limbs for both the normal limb and after fixation of the tibiotalar joint. Six joints were fixed in neutral, in 5–7° of varus and of valgus. Ten degrees of equinus angulation was also studied. Each position of fixation was tested independently. Neutral was defined as fixation without coronal or sagittal plane angulation compared with prefixation alignment of the specimen. When compared with normal unfused condition, peak pressures increased, and contact areas decreased in the subtalar joint for specimens fixed in neutral, varus, and valgus. However, the change in peak pressure for neutral fusion compared with normal control was not statistically significant ( P > 0.07). Peak pressures for varus and valgus fixation were significantly different from normal ( P < 0.001). Contact areas for all positions of fixation were significantly different from normal ( P < 0.001). Coronal plane angulation, however, also resulted in significantly lower contact areas compared with neutral fixation ( P < 0.001). Contact areas and peak pressures in the talonavicular joint did not appear to be substantially affected by tibiotalar fixation with coronal plane angulation. Equinus fixation qualitatively increased contact areas and peak pressures in the talonavicular and posterior facet of the subtalar joint. Neutral alignment of the tibiotalar joint in the coronal and sagittal planes altered subtalar and talonavicular joint contact characteristics the least compared with normal controls. Therefore, ankle fusion in the neutral position would be expected to most closely preserve normal joint biomechanics and may limit the progression of degenerative arthrosis of the subtalar joint.


2013 ◽  
Vol 39 (4) ◽  
pp. 978-987 ◽  
Author(s):  
Emily J. McWalter ◽  
Colm M. O'Kane ◽  
David P. FitzPatrick ◽  
David R. Wilson

1985 ◽  
Vol &NA; (199) ◽  
pp. 72???80 ◽  
Author(s):  
RICHARD R. TARR ◽  
CHARLES T. RESNICK ◽  
KENDALL S. WAGNER ◽  
AUGUSTO SARMIENTO

2014 ◽  
Vol 2014 (0) ◽  
pp. _J0210205--_J0210205-
Author(s):  
Yuto KASUGA ◽  
Kiyoko KAZAMA ◽  
Makoto SAKAMOTO ◽  
Koichi KOBAYASHI

Sign in / Sign up

Export Citation Format

Share Document