Changes in Tibiotalar Joint Contact Areas Following Experimentally Induced Tibial Angular Deformities

1985 ◽  
Vol &NA; (199) ◽  
pp. 72???80 ◽  
Author(s):  
RICHARD R. TARR ◽  
CHARLES T. RESNICK ◽  
KENDALL S. WAGNER ◽  
AUGUSTO SARMIENTO
1997 ◽  
Vol 18 (12) ◽  
pp. 792-797 ◽  
Author(s):  
Jennifer S. Wayne ◽  
Keith W. Lawhorn ◽  
Kenneth E. Davis ◽  
Karanvir Prakash ◽  
Robert S. Adelaar

Contact areas and peak pressures in the posterior facet of the subtalar and the talonavicular joints were measured in cadaver lower limbs for both the normal limb and after fixation of the tibiotalar joint. Six joints were fixed in neutral, in 5–7° of varus and of valgus. Ten degrees of equinus angulation was also studied. Each position of fixation was tested independently. Neutral was defined as fixation without coronal or sagittal plane angulation compared with prefixation alignment of the specimen. When compared with normal unfused condition, peak pressures increased, and contact areas decreased in the subtalar joint for specimens fixed in neutral, varus, and valgus. However, the change in peak pressure for neutral fusion compared with normal control was not statistically significant ( P > 0.07). Peak pressures for varus and valgus fixation were significantly different from normal ( P < 0.001). Contact areas for all positions of fixation were significantly different from normal ( P < 0.001). Coronal plane angulation, however, also resulted in significantly lower contact areas compared with neutral fixation ( P < 0.001). Contact areas and peak pressures in the talonavicular joint did not appear to be substantially affected by tibiotalar fixation with coronal plane angulation. Equinus fixation qualitatively increased contact areas and peak pressures in the talonavicular and posterior facet of the subtalar joint. Neutral alignment of the tibiotalar joint in the coronal and sagittal planes altered subtalar and talonavicular joint contact characteristics the least compared with normal controls. Therefore, ankle fusion in the neutral position would be expected to most closely preserve normal joint biomechanics and may limit the progression of degenerative arthrosis of the subtalar joint.


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0025
Author(s):  
Zhao Hong-Mou

Category: Ankle; Basic Sciences/Biologics Introduction/Purpose: To study the effect of different degrees of distal tibial varus and valgus deformities on the tibiotalar joint contact, and to understand the role of fibular osteotomy. Methods: Eight cadaveric lower legs were used for biomechanical study. Nine conditions were included: normal ankle joint (group A), 10° varus (group B), 5° varus (group C), 5° valgus (group D), 10° valgus (group E) with fibular preserved, and 10° varus (group F), 5° varus (group G), 5° valgus (group H), and 10° valgus (group I) after fibular osteotomy. The joint contact area, contact pressure, and peak pressure were tested; and the translation of contact force center was observed. Results: The joint contact area, contact pressure, and peak pressure had no significant difference between group A and groups B to E (P>0.05). After fibular osteotomy, the contact area decreased significantly in groups F and I when compared with group A (P<0.05); the contact pressure increased significantly in groups F, H, and I when compared with group A (P<0.05); the peak pressure increased significantly in groups F and I when compared with group A (P<0.05). There were two main anterior-lateral and anterior-medial contact centers in normal tibiotalar joint, respectively; and the force center was in anterior-lateral part, just near the center of tibiotalar joint. While the fibula was preserved, the force center transferred laterally with increased varus angles; and the force center transferred medially with increased valgus angles. However, the force center transferred oppositely to the medial part with increased varus angles, and laterally with increased valgus angles after fibular osteotomy. Conclusion: Fibular osteotomy facilitates the tibiotalar contact pressure translation, and is helpful for ankle joint realignment in suitable cases.


2013 ◽  
Vol 39 (4) ◽  
pp. 978-987 ◽  
Author(s):  
Emily J. McWalter ◽  
Colm M. O'Kane ◽  
David P. FitzPatrick ◽  
David R. Wilson

1990 ◽  
Vol 23 (4) ◽  
pp. 369
Author(s):  
J.O. Søjbjerg ◽  
P. Kjærsgaard-Andersen ◽  
F. Linde

2005 ◽  
Vol 33 (10) ◽  
pp. 1565-1574 ◽  
Author(s):  
Neil Upadhyay ◽  
Samuel R. Vollans ◽  
Bahaa B. Seedhom ◽  
Roger W. Soames

Background Although 10% postoperative patellar tendon shortening after bone–patellar tendon–bone autograft reconstruction of the anterior cruciate ligament has been reported, there are no published studies assessing the effect of shortening on patellofemoral joint biomechanics under physiological loading conditions. Purpose To investigate the influence of patellar tendon shortening on patellofemoral joint biomechanics. Study Design Controlled laboratory study. Methods The authors evaluated the patellofemoral contact area, the location of contact, and the patellofemoral joint reaction force and contact stresses in 7 cadaveric knees before and after 10% patellar tendon shortening. Shortening was achieved using a specially designed device. Experimental conditions simulating those occurring during level walking were employed: physiological quadriceps loads and corresponding angles of tibial rotation were applied at 15 °, 30 °, and 60 ° flexion of the knee. Patellofemoral joint contact areas were measured before and after shortening using the silicone oil–carbon black powder suspension squeeze technique. Results After patellar tendon shortening, patellofemoral joint contact areas were displaced proximally on the patellar surface and distally on the femoral surface. Although the contact area increased by 18% at 15 ° of knee flexion (P=. 04), no significant change occurred at 30 ° or 60 ° of knee flexion (P>. 05). Patellofemoral contact stress remained unchanged after patellar tendon shortening (P>. 05) at each flexion angle. Conclusion Our results suggest that a 10% shortening of the patellar tendon does not alter patellar contact stresses during locomotion. It is not clear whether apparent changes in contact location in all positions and contact area at 15 ° would have clinical consequences.


Author(s):  
Yosei NODAGUCHI ◽  
Hidenori YOSHIDA ◽  
Yuji TANABE ◽  
Koichi KOBAYASHI ◽  
Makoto SAKAMOTO

2010 ◽  
Vol 2010 (0) ◽  
pp. 354-355
Author(s):  
Makoto SAKAMOTO ◽  
Keisuke SASAGAWA ◽  
Yuji TANABE ◽  
Koichi KOBAYASHI

2019 ◽  
Vol 28 (8) ◽  
pp. 1546-1553 ◽  
Author(s):  
Fabian G.P. Moungondo ◽  
Aurélie Andrzejewski ◽  
Roger R.P. van Riet ◽  
Véronique Feipel ◽  
Marcel Rooze ◽  
...  

1985 ◽  
Vol 3 (1) ◽  
pp. 49-55 ◽  
Author(s):  
James M. Moran ◽  
John H. Hemann ◽  
A. Seth Greenwald

2021 ◽  
pp. 036354652110204
Author(s):  
Dong Wang ◽  
Lukas Willinger ◽  
Kiron K. Athwal ◽  
Andy Williams ◽  
Andrew A. Amis

Background: Little scientific evidence is available regarding the effect of knee joint line obliquity (JLO) before and after coronal realignment osteotomy. Hypotheses: Higher JLO would lead to abnormal relative position of the femur on the tibia, a shift of the joint contact areas, and elevated joint contact pressures. Study Design: Descriptive laboratory study. Methods: 10 fresh-frozen human cadaveric knees (age, 59 ± 5 years) were axially loaded to 1500 N in a materials testing machine with the joint line tilted 0°, 4°, 8°, and 12° varus (“downhill” medially) and valgus, at 0° and 20° of knee flexion. The mechanical compression axis was aligned to the center of the tibial plateau. Contact pressure and contact area were recorded by pressure sensors inserted between the tibia and femur below the menisci. Changes in relative femoral and tibial position in the coronal plane were obtained by an optical tracking system. Results: Both medial and lateral JLO caused significant tibiofemoral subluxation and pressure distribution changes. Medial (varus) JLO caused the femur to subluxate medially down the coronal slope of the tibial plateau, and vice versa for lateral (valgus) downslopes ( P < .01), giving a 6-mm range of subluxation. The areas of peak pressure moved 12 mm and 8 mm across the medial and lateral condyles, onto the downhill meniscus and the “uphill” tibial spine. Changes in JLO had only small effects on maximum contact pressures. Conclusion: A 4° change of JLO during load bearing caused significant mediolateral tibiofemoral subluxation. The femur slid down the slope of the tibial plateau to abut the tibial eminence and also to rest on the downhill meniscus. This caused large movements of the tibiofemoral contact pressures across each compartment. Clinical Relevance: These results provide important information for understanding the consequences of creating coronal JLO and for clinical practice in terms of osteotomy planning regarding the effect on JLO. This information provides guidance regarding the choice of single- or double-level osteotomy. Excessive JLO alteration may cause abnormal tibiofemoral joint articulation and chondral or meniscal loading.


Sign in / Sign up

Export Citation Format

Share Document