The Effect of Tibiotalar Fixation on Foot Biomechanics

1997 ◽  
Vol 18 (12) ◽  
pp. 792-797 ◽  
Author(s):  
Jennifer S. Wayne ◽  
Keith W. Lawhorn ◽  
Kenneth E. Davis ◽  
Karanvir Prakash ◽  
Robert S. Adelaar

Contact areas and peak pressures in the posterior facet of the subtalar and the talonavicular joints were measured in cadaver lower limbs for both the normal limb and after fixation of the tibiotalar joint. Six joints were fixed in neutral, in 5–7° of varus and of valgus. Ten degrees of equinus angulation was also studied. Each position of fixation was tested independently. Neutral was defined as fixation without coronal or sagittal plane angulation compared with prefixation alignment of the specimen. When compared with normal unfused condition, peak pressures increased, and contact areas decreased in the subtalar joint for specimens fixed in neutral, varus, and valgus. However, the change in peak pressure for neutral fusion compared with normal control was not statistically significant ( P > 0.07). Peak pressures for varus and valgus fixation were significantly different from normal ( P < 0.001). Contact areas for all positions of fixation were significantly different from normal ( P < 0.001). Coronal plane angulation, however, also resulted in significantly lower contact areas compared with neutral fixation ( P < 0.001). Contact areas and peak pressures in the talonavicular joint did not appear to be substantially affected by tibiotalar fixation with coronal plane angulation. Equinus fixation qualitatively increased contact areas and peak pressures in the talonavicular and posterior facet of the subtalar joint. Neutral alignment of the tibiotalar joint in the coronal and sagittal planes altered subtalar and talonavicular joint contact characteristics the least compared with normal controls. Therefore, ankle fusion in the neutral position would be expected to most closely preserve normal joint biomechanics and may limit the progression of degenerative arthrosis of the subtalar joint.

1985 ◽  
Vol &NA; (199) ◽  
pp. 72???80 ◽  
Author(s):  
RICHARD R. TARR ◽  
CHARLES T. RESNICK ◽  
KENDALL S. WAGNER ◽  
AUGUSTO SARMIENTO

2020 ◽  
Vol 5 (2) ◽  
pp. 2473011420S0001
Author(s):  
Niall A. Smyth ◽  
Pooyan Abbasi ◽  
Cesar de Cesar Netto ◽  
Stuart M. Michnick ◽  
Nicholas Casscells ◽  
...  

Category: Basic Sciences/Biologics; Ankle; Hindfoot Introduction/Purpose: The tall Controlled Ankle Motion (CAM) boot and the short CAM boot are commonly used devices to immobilize the foot and ankle. However, the effect of these devices on joint contact pressures is unknown. The objective of this study is to assess the effect of the tall CAM boot and short CAM boot on contact pressures of the ankle, subtalar, talonavicular, and calcaneocuboid joints. We hypothesize that both the tall CAM boot and short CAM boot will reduce contact pressures of the ankle and hindfoot joints, with the tall CAM boot having the greatest effect. Methods: Eight lower extremity cadaver specimens were mounted on a servohydraulic test frame. The specimens were loaded to 700 N at a cyclical frequency of 1 Hz with the posterior tibial, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and Achilles tendon physiologically tensioned. TekScan (TekScan, Boston, MA) pressure sensors were placed in the ankle, subtalar, talonavicular, and calcaneocuboid joints. In the sagittal plane, the specimens were loaded on a neutral surface, followed by 20o of dorsiflexion. Each specimen served as its own control, with contact pressures measured with no immobilization (control), followed by placement in a short CAM boot and tall CAM boot. In addition, contact pressures in the immobilized limbs were measured at muscle loads both equal to and half of the load applied to the control in order to account for decreased muscle activation during immobilization. Results: There was no difference in the average and peak contact pressures of the ankle, subtalar, talonavicular and calcaneocuboid joints when comparing the short CAM boot to no immobilization at equal tendon loads. The tall CAM boot significantly decreased average and peak contact pressures of the ankle, subtalar, and talonavicular joints when compared to no immobilization. The tall CAM decreased the contact pressures of the talonavicular and subtalar joint to a greater degree than the ankle joint. The reduction in contact pressures was accentuated when the load applied to the tendons was decreased in accordance with diminished muscle activation during immobilization. Neither immobilization device decreased the contact pressures of the calcaneocuboid joint at equal tendon loads. Neither CAM boot changed the center of pressure of any joint. Conclusion: Immobilization in a tall CAM boot decreases contact pressures of the ankle and hindfoot in both a neutral position and in dorsiflexion. A tall CAM boot should be used clinically if the goal of its use is to maximally reduce contact pressures of the ankle and hindfoot. The tall CAM boot is better at reducing the contact pressures of the subtalar and talonavicular joint than the ankle joint.


2006 ◽  
Vol 96 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Nick A. Guldemond ◽  
Pieter Leffers ◽  
Antal P. Sanders ◽  
Hans Emmen ◽  
Nicolaas C. Schaper ◽  
...  

Foot orthoses are widely used to treat various foot problems. A literature search revealed no publications on differences in plantar pressure distribution resulting from casting methods for foot orthoses. Four casting methods were used for construction of orthoses. Two foam box techniques were used: accommodative full weightbearing method (A) and functional semiweightbearing method (B). Also, two suspension plaster casting techniques were used: accommodative casting (C) and functional subtalar joint neutral position (Root) method (D). Their effects on contact area, plantar pressure, and walking convenience were evaluated. All orthoses increased the total contact area (mean, 17.4%) compared with shoes without orthoses. Differences in contact areas between orthoses for total plantar surface were statistically significant. Peak pressures for the total plantar surface were lower with orthoses than without orthoses (mean, 22.8%). Among orthoses, only the difference between orthoses A and B was statistically significant. Differences between orthoses for the forefoot were small and not statistically significant. The gait lines of the shoe without an insole and of the accommodative orthoses are more medially located than those of functional orthoses. Walking convenience in the shoe was better rated than that with orthoses. There were no differences in perception of walking convenience between orthoses A, B, and C. Orthosis D had the lowest convenience rating. The four casting methods resulted in differences between orthoses with respect to contact areas and walking convenience but only slight differences in peak pressures. (J Am Podiatr Med Assoc 96(1): 9–18, 2006)


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0040
Author(s):  
Niall A. Smyth ◽  
Pooyan Abbasi ◽  
Cesar de Cesar Netto ◽  
Stuart M. Michnick ◽  
Nicholas D. Casscells ◽  
...  

Category: Ankle, Hindfoot Introduction/Purpose: The tall Controlled Ankle Motion (CAM) boot and the short CAM boot are commonly used devices to immobilize the foot and ankle. These devices are preferably used instead of casts and splints as they are easily removed, allowing possible wound examination, personal hygiene, and therapeutic exercises. However, the effect of these devices on joint contact pressures is unknown. The aim of this study is to assess the effect of the tall CAM boot and short CAM boot on contact pressures of the ankle, subtalar, talonavicular, and calcaneocuboid joints. We hypothesize that both the tall CAM boot and short CAM boot will reduce contact pressures of the ankle and hindfoot joints, with the tall CAM boot having the greatest effect. Methods: Eight lower extremity cadaver specimens were mounted on a servohydraulic test frame. The specimens were loaded to 700 N at a cyclical frequency of 1 Hz with the posterior tibial, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and Achilles tendon physiologically tensioned. TekScan (TekScan, Boston, MA) pressure sensors were placed in the ankle, subtalar, talonavicular, and calcaneocuboid joints. In the sagittal plane, the specimens were loaded on a neutral surface, followed by 20o of dorsiflexion. Each specimen served as its own control, with contact pressures measured with no immobilization (control), followed by placement in a short CAM boot and tall CAM boot. In addition, contact pressures in the immobilized limbs were measured at muscle loads both equal to and half of the load applied to the control in order to account for decreased muscle activation during immobilization. Results: There was no difference in the average and peak contact pressures of the ankle, subtalar, talonavicular and calcaneocuboid joints when comparing the short CAM boot to no immobilization at equal tendon loads. The tall CAM boot significantly decreased average and peak contact pressures of the ankle, subtalar, and talonavicular joints when compared to no immobilization. The reduction in contact pressures was accentuated when the load applied to the tendons was decreased in accordance with diminished muscle activation during immobilization. Neither immobilization device decreased the contact pressures of the calcaneocuboid joint at equal tendon loads. Conclusion: Immobilization in a tall CAM boot decreases contact pressures of the ankle and hindfoot in both a neutral position and in dorsiflexion. A tall CAM boot should be used clinically if the goal of its use is to maximally reduce contact pressures of the ankle and hindfoot.


2000 ◽  
Vol 21 (3) ◽  
pp. 216-220 ◽  
Author(s):  
George A. Arangio ◽  
Douglas C. Phillippy ◽  
Dayan Xiao ◽  
Wei-Kai Gu ◽  
Eric P. Salathe

A three-dimensional biomechanical model was used to calculate the mechanical response of the foot to a load of 683 Newtons with the subtalar joint in the neutral position, at five degrees of pronation, and at five degrees of supination. Pronation causes the forefoot to evert, increasing the load borne by the first metatarsal. This results in a 47% increase in the moment about the talonavicular joint and a 58% increase in the moment about the navicular-medial cuneiform joint. Subtalar joint supination causes the forefoot to invert and results in a 55% increase in the moment about the calcaneal-cuboid joint.


2019 ◽  
pp. 3-13
Author(s):  
Alexandru Cîtea ◽  
George-Sebastian Iacob

Posture is commonly perceived as the relationship between the segments of the human body upright. Certain parts of the body such as the cephalic extremity, neck, torso, upper and lower limbs are involved in the final posture of the body. Musculoskeletal instabilities and reduced postural control lead to the installation of nonstructural posture deviations in all 3 anatomical planes. When we talk about the sagittal plane, it was concluded that there are 4 main types of posture deviation: hyperlordotic posture, kyphotic posture, rectitude and "sway-back" posture.Pilates method has become in the last decade a much more popular formof exercise used in rehabilitation. The Pilates method is frequently prescribed to people with low back pain due to their orientation on the stabilizing muscles of the pelvis. Pilates exercise is thus theorized to help reactivate the muscles and, by doingso, increases lumbar support, reduces pain, and improves body alignment.


2019 ◽  
Vol 47 (12) ◽  
pp. 2895-2903 ◽  
Author(s):  
Lachlan Batty ◽  
Jerome Murgier ◽  
Richard O’Sullivan ◽  
Kate E. Webster ◽  
Julian A. Feller ◽  
...  

Background: The Kaplan fibers (KFs) of the iliotibial band have been suggested to play a role in anterolateral rotational instability of the knee, particularly in the setting of an anterior cruciate ligament (ACL) rupture. Description of the normal magnetic resonance imaging (MRI) anatomy of the KFs may facilitate subsequent investigation into the MRI signs of injury. Purpose: To assess if the KF complex can be identified on 3-T MRI using standard knee protocols. Study Design: Cohort study (diagnosis); Level of evidence, 3. Methods: 3-T MRI scans of 50 ACL-intact knees were reviewed independently by a musculoskeletal radiologist and 2 orthopaedic surgeons. Identification of the KFs was based on radiological diagnostic criteria developed a priori. Identification of the KFs in the sagittal, coronal, and axial planes was recorded. Interobserver reliability was assessed using the Kappa statistic. Detailed anatomy including distance to the joint line and relationship to adjacent structures was recorded. Results: The mean patient age was 43 years (range, 15-81 years), 58% were male, and 50% were right knees. The KFs were identified by at least 2 reviewers on the sagittal images in 96% of cases, on the axial images in 76% of cases, and on the coronal images in 4% of cases. The mean distance from the KF distal femoral insertion to the lateral joint line was 50.1 mm (SD, 6.6 mm) and the mean distance to the lateral gastrocnemius tendon origin was 10.8 mm (SD, 8.6 mm). The KFs were consistently identified immediately anterior to the superior lateral geniculate artery on sagittal imaging. Interobserver reliability for identification was best in the sagittal plane (Kappa 0.5) and worst in the coronal plane (Kappa 0.1). Conclusion: The KF complex can be identified on routine MRI sequences in the ACL-intact knee; however, there is low to moderate interobserver reliability. Imaging in the sagittal plane had the highest rate of identification and the coronal plane the lowest. There is a consistent relationship between the most distal KF femoral attachment and the lateral joint line, lateral gastrocnemius tendon, and superior lateral geniculate artery.


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0025
Author(s):  
Zhao Hong-Mou

Category: Ankle; Basic Sciences/Biologics Introduction/Purpose: To study the effect of different degrees of distal tibial varus and valgus deformities on the tibiotalar joint contact, and to understand the role of fibular osteotomy. Methods: Eight cadaveric lower legs were used for biomechanical study. Nine conditions were included: normal ankle joint (group A), 10° varus (group B), 5° varus (group C), 5° valgus (group D), 10° valgus (group E) with fibular preserved, and 10° varus (group F), 5° varus (group G), 5° valgus (group H), and 10° valgus (group I) after fibular osteotomy. The joint contact area, contact pressure, and peak pressure were tested; and the translation of contact force center was observed. Results: The joint contact area, contact pressure, and peak pressure had no significant difference between group A and groups B to E (P>0.05). After fibular osteotomy, the contact area decreased significantly in groups F and I when compared with group A (P<0.05); the contact pressure increased significantly in groups F, H, and I when compared with group A (P<0.05); the peak pressure increased significantly in groups F and I when compared with group A (P<0.05). There were two main anterior-lateral and anterior-medial contact centers in normal tibiotalar joint, respectively; and the force center was in anterior-lateral part, just near the center of tibiotalar joint. While the fibula was preserved, the force center transferred laterally with increased varus angles; and the force center transferred medially with increased valgus angles. However, the force center transferred oppositely to the medial part with increased varus angles, and laterally with increased valgus angles after fibular osteotomy. Conclusion: Fibular osteotomy facilitates the tibiotalar contact pressure translation, and is helpful for ankle joint realignment in suitable cases.


2019 ◽  
Vol 10 (3) ◽  
pp. 272-279 ◽  
Author(s):  
Sayf S. A. Faraj ◽  
Niek te Hennepe ◽  
Miranda L. van Hooff ◽  
Martin Pouw ◽  
Marinus de Kleuver ◽  
...  

Study Design: Historical cohort study. Objective: To evaluate progression in the coronal and sagittal planes in nonsurgical patients with adult spinal deformity (ASD). Methods: A retrospective analysis of nonsurgical ASD patients between 2005 and 2017 was performed. Magnitude of the coronal and sagittal planes were compared on the day of presentation and at most recent follow-up. Previous reported prognostic factors for progression in the coronal plane, including the direction of scoliosis, curve magnitude, and the position of the intercrest line (passing through L4 or L5 vertebra), were studied. Results: Fifty-eight patients were included with a mean follow-up of 59.8 ± 34.5 months. Progression in the coronal plane was seen in 72% of patients. Mean Cobb angle on the day of presentation and most recent follow-up was 37.2 ± 14.6° and 40.8° ± 16.5°, respectively. No significant differences were found in curve progression in left- versus right-sided scoliosis (3.3 ± 7.1 vs 3.7 ± 5.4, P = .81), Cobb angle <30° versus ≥30° (2.6 ± 5.0 vs 4.3 ± 6.5, P = .30), or when the intercrest line passed through L4 rather than L5 vertebra (3.4 ± 5.0° vs 3.8 ± 7.1°, P = .79). No significant differences were found in the sagittal plane between presentation and most recent follow-up. Conclusions: This is the first study that describes progression in the coronal and sagittal planes in nonsurgical patients with ASD. Previous reported prognostic factors were not confirmed as truly relevant. Although progression appears to occur, large variation exists and these results may not be directly applicable to the individual patient.


Sign in / Sign up

Export Citation Format

Share Document