Prototype and evaluation of a small jumping robot without a battery and sensor for swarm behavior generation

Author(s):  
Tomoki Miyashita ◽  
Ryuji Yamada ◽  
Takashi Takuma
Keyword(s):  
2021 ◽  
Vol 11 (13) ◽  
pp. 5891
Author(s):  
Gang-Hyun Jeon ◽  
Yong-Jai Park

In this paper, soft-morphing, deformation control by fabric structures and soft-jumping mechanisms using magnetic yield points are studied. The durability and adaptability of existing rigid-base jumping mechanisms are improved by a soft-morphing process that employs the residual stress of a polymer. Although rigid body-based jumping mechanisms are used, they are driven by multiple components and complex structures. Therefore, they have drawbacks in terms of shock durability and fatigue accumulation. To improve these problems, soft-jumping mechanisms are designed using soft polymer materials and soft-morphing techniques with excellent shock resistance and environmental adaptability. To this end, a soft jumping mechanism is designed to store energy using the air pressure inside the structure, and the thickness of the polymer layer is adjusted based on the method applied for controlling the polymer freedom and residual stress deformation. The soft jumping mechanism can transfer energy more efficiently and stably using an energy storage and release mechanism and the rounded ankle structure designed using soft morphing. Therefore, the soft morphing and mechanisms of energy retention and release were applied to fabricate a soft robot prototype that can move in the desired direction and jump; the performance experiment was carried out.


Author(s):  
Kent Yoshikawa ◽  
Masatsugu Otsuki ◽  
Takashi Kubota ◽  
Takao Maeda ◽  
Masataka Ushijima ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 767-776
Author(s):  
Xian-wei Liu ◽  
Yong-bin Jin ◽  
Lei Jiang ◽  
Hong-tao Wang

2021 ◽  
pp. 1-20
Author(s):  
Gui Shun

Abstract Exploring the locomotion of creatures is a challenging task in bionic robots, and the existing iterative design methods are mainly based on one or two characteristics to optimize robots. However, it is hard to obtain other features. Here, we introduced the thinking of system identification theory to the bionic robots, averting the exploration of the dynamics and reducing the difficulty of design greatly. A one-DOF six-bar mechanism (Watt I) was designated as the model to be identified, and it was divided into two parts, i.e. a one-DOF four-bar linkage and a three-DOF series arm. Then we formed constraints and a loss function. The parameters of the model were identified based on the kinematic data of a marmoset jumping. As a result, we obtained the desired model. Then, a prototype derived from the model was fabricated, and the experiments verified the effectiveness of the method. Our method also can be applied to other motion simulation scenarios.


2021 ◽  
Author(s):  
Lucas Tiziani ◽  
Yetong Zhang ◽  
Frank Dellaert ◽  
Frank L. Hammond

Sign in / Sign up

Export Citation Format

Share Document