E213 Numerical analysis on mixing process of two component gases in a vertical fluid layer : Effectiveness on natural circulation

2015 ◽  
Vol 2015 (0) ◽  
pp. _E213-1_-_E213-2_
Author(s):  
Hirofumi HATORI ◽  
Tetsuaki TAKEDA ◽  
Shumpei FUNATANI
Author(s):  
Tetsuaki Takeda ◽  
Shumpei Funatani

A depressurization accident is a design-basis accidents of a very high temperature reactor. When a depressurization accident occurs, air is expected to enter the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, it is important to know a mixing process of different kind of gases in the stable and unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to predict and analyze the phenomena of air ingress during a depressurization accident, therefore, it is important to develop the method for prevention of air ingress during the accident. We have carried out an experiment and a numerical analysis using three-dimensional computational fluid dynamics (3D CFD) to obtain the mixing process of two component gases and flow characteristics of the localized natural convection. This study is also to investigate a control method of natural circulation of air by injection of helium gas. The numerical model consists of a storage tank and a reverse U-shaped vertical slot. They are separated by a partition plate. One side of the left wall of the left side vertical slot is heated and the other side was cooled. The right side vertical slot is cooled. The procedure of the experiment and the numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left side vertical slot, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by the experiment and steady state analysis. The unsteady state experiment and analysis were started after the partition plate was opened. The result obtained in the experiment was simulated by the numerical analysis quantitatively. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. When the temperature difference of the left vertical fluid layer was set to 100K and the combination of the mixed gas was helium and nitrogen, natural circulation produced after 110 minutes elapsed.


2015 ◽  
Vol 2015.21 (0) ◽  
pp. _11014-1_-_11014-2_
Author(s):  
Hirofumi HATORI ◽  
Tetsuaki TAKEDA ◽  
Shumpei FUNATANI

Author(s):  
Hiroki Mizuno ◽  
Tetsuaki Takeda ◽  
Shumpei Funatani

This study is to investigate an effect of natural convection or natural circulation on a transport process by molecular diffusion in a stratified fluid layer consisting of two component gases. There are many experiment and analysis regarding natural convection or natural circulation in the vertical slot. However, there are few studies on natural convection or circulation and molecular diffusion in the stratified fluid layer consisting of two component gases. It was confirmed that these phenomena appear when the depressurization accident occurs in the very high temperature reactor (VHTR). Therefore it is important to evaluate the transport and mixing processes during the depressurization accident of the VHTR. The experiment has been performed regarding the combined phenomena of molecular diffusion and natural convection or circulation in a two parallel vertical slots filled with two component gases. The vertical slot consists of the one side heated wall and the other side cooled wall. The other slot consists of the two cooled walls. The dimension of heated wall is 500mm×200mm and thickness is 3mm. The width of the slot is 20mm and the aspect ratio is 25. Combination of nitrogen(N2)/argon(Ar), neon(Ne)/argon(Ar), helium(He)/nitrogen(N2) and helum(He)/argon(N2) was used as the first step of the experiment of the two component gases. The density change of the gas mixture and the gas temperature distribution in the slots were obtained. The mixing process of the heavier gas from the bottom side of the slot filled with the lighter gas was discussed in this paper. The experimental results showed that the transport phenomena by the molecular diffusion were influenced by the localized natural convection or circulation of the gas mixture in the stratified fluid layer. From the experimental results, it was found that the mixing process by molecular diffusion was affected significantly by the natural convection or circulation induced by the slight temperature difference between both vertical walls.


Author(s):  
Shumpei Funatani ◽  
Tetsuaki Takeda

This study is to investigate the effect of one-dimensional natural circulation on the mixing process of two component gases by evaluating the onset time of natural circulation through the apparatus under the stable density stratified fluid layer. The experimental apparatus consists of a reverse U-shaped vertical slot and a storage tank. The left side vertical slot consists of the heated wall and the cooled wall. The right side vertical slot consists of the two cooled walls. Temperature difference between the vertical walls was set to 50, 70, and 100 K. In this study, the combination of the two component gases is He/Ar and density ratio of each component is 1.4/10. The heavy gas was filled with the storage tank and light gas was filled with the reverse U-shaped vertical slot. Before the experiment starts, the localized natural convection was generated in the heated side vertical slot. After the experiment starts, the heavy gas will be transported to the slot by the molecular diffusion and natural convection. And then, natural circulation occurs abruptly through the reverse U-shaped passage. The mixing process of two component gases and the onset time of natural circulation in the vertical fluid layer were affected not only by the localized natural convection but also by the molecular diffusion. The wall and gas temperatures were measured by thermocouples and the velocity of natural convection was measured to evaluate the characteristics of the mixing process and the natural convection. These experimental results show that generation time of natural circulation was affected by molecular diffusion and localized natural convection. When the two components of gases have large density ratios and large Gr numbers, the mixing process of two components of gases was affected by more intensively molecular diffusion than localized natural convection when temperature difference was 50K. The mixing process of two component gas was affected by more intensively localized natural convection than molecular diffusion when temperature difference was 70 to 100K. However, two component gases were affected by more intensively molecular diffusion than localized natural convection at small density ratios and small Gr numbers.


Author(s):  
Tetsuaki Takeda ◽  
Shumpei Funatani

This study is to investigate an effect of natural convection or natural circulation on a transport process by molecular diffusion in a stratified fluid layer consisting of two component gases. There are many experiment and analysis regarding natural convection or natural circulation in the vertical slot. However, there are few studies on natural convection or circulation and molecular diffusion in the stratified fluid layer consisting of two component gases. It was confirmed that these phenomena appear when the depressurization accident occurs in the very high temperature reactor (VHTR). Therefore it is important to evaluate the transport and mixing processes during the depressurization accident of the VHTR. The experiment has been performed regarding the combined phenomena of molecular diffusion and natural convection or circulation in a two parallel vertical slots filled with two component gases. The vertical slot consists of the one side heated wall and the other side cooled wall. The other slot consists of the two cooled walls. The dimension of heated wall is 500mm×200mm and thickness is 3mm. The width of the slot is 20mm and the aspect ratio is 25. Combination of nitrogen (N2)/argon(Ar), neon(Ne)/Ar, helium(He)/N2 and He/Ar was used as the first step of the experiment of the two component gases. The density change of the gas mixture and the gas temperature distribution in the slots were obtained. The mixing process of the heavier gas from the bottom side of the slot filled with the lighter gas was discussed in this paper. The experimental results showed that the transport phenomena by the molecular diffusion were influenced by the localized natural convection or circulation of the gas mixture in the stratified fluid layer. From the experimental results, it was found that the mixing process by molecular diffusion was affected significantly by the natural convection or circulation induced by the slight temperature difference between both vertical walls.


Author(s):  
Tetsuaki Takeda

A depressurization accident is the one of the design-basis accidents of a Very-High-Temperature Reactor (VHTR). When a depressurization accident occurs, air is expected to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, it is important to understand the mixing processes of different kinds of gases in the stable and unstable stratified fluid layers. In particular, it is also important to examine the influence of localized natural convection and molecular diffusion on the mixing process from a safety viewpoint. Therefore, in order to predict or analyze the air ingress phenomena during a depressurization accident, it is important to develop a method for the prevention of air ingress during an accident. We carried out experiments and numerical analysis using three-dimensional (3D) CFD code to obtain the mixing process of two-component gases and the flow characteristics of localized natural convection. This study also investigated a control method for the natural circulation of air through the injection of helium gas. The numerical model consists of a storage tank and a reverse U-shaped vertical rectangular passage. They are separated by a horizontal partition plate. One sidewall of the high-temperature side vertical passage is heated and the other sidewall is cooled. The low-temperature vertical passage is cooled by ambient air. The storage tank is filled with heavy gas and the reverse U-shaped vertical passage is filled with a light gas. In the vertical passage of the high-temperature side, localized natural convection is generated by the temperature difference between the vertical walls. The results obtained from the experiments were quantitatively simulated using 3D numerical analysis. The two component gases were mixed via molecular diffusion and natural convection. After some time elapsed, natural circulation occurred through the reverse U-shaped vertical passage. These flow characteristics are the same as those of phenomena generated in the passage between a permanent reflector and a pressure vessel wall of the VHTR.


Sign in / Sign up

Export Citation Format

Share Document