high temperature side
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kenjiro Okawa ◽  
Yasutaka Amagai ◽  
Hiroyuki Fujiki ◽  
Nobu-Hisa Kaneko

AbstractThe concept of “thermal inductance” expands the options of thermal circuits design. However, the inductive component is the only missing components in thermal circuits unlike their electromagnetic counterparts. Herein, we report an electrically controllable reverse heat flow, in which heat flows from a low-temperature side to a high-temperature side locally and temporarily in a single material by imposing thermal inertia and ac current. This effect can be regarded as an equivalent of the “thermoinductive” effect induced by the Peltier effect. We derive the exact solution indicating that this reverse heat flow occurs universally in solid-state systems, and that it is considerably enhanced by thermoelectric properties. A local cooling of 25 mK is demonstrated in (Bi,Sb)2Te3, which is explained by our exact solution. This effect can be directly applicable to the potential fabrication of “thermoinductor” in thermal circuits.


2020 ◽  
Vol 52 (1) ◽  
pp. 257-269
Author(s):  
Ken-ichi Ebihara ◽  
Yuri Sugiyama ◽  
Ryosuke Matsumoto ◽  
Kenichi Takai ◽  
Tomoaki Suzudo

AbstractWe obtained thermal desorption spectra of hydrogen for a small-size iron specimen to which strain was applied during charging with hydrogen atoms. In the spectra, a shoulder-shaped peak in the high-temperature side was enhanced compared with the spectra of the specimen to which only strain was applied. We also observed that the peak almost disappeared by aging processes at ≥ 373 K. Then, assuming that the shoulder-shaped peak results from hydrogen atoms released by vacancies, we simulated the thermal desorption spectra using a model incorporating the behavior of vacancies and vacancy clusters. The model considered up to vacancy cluster $${{V_9}}$$ V 9 , which is composed of nine vacancies, and employed the parameters based on atomistic calculations, including the H trapping energy of vacancies and vacancy clusters that we estimated using the molecular static calculation. As a result, we revealed that the model could, on the whole, reproduce the experimental spectra, except two characteristic differences, and also the dependence of the spectra on the aging temperature. By examining the cause of the differences, the possibilities that the diffusion of clusters of $${V_2}$$ V 2 and $${V_3}$$ V 3 is slower than the model and that vacancy clusters are generated by applying strain and H charging concurrently were indicated.


Holzforschung ◽  
2019 ◽  
Vol 74 (1) ◽  
pp. 10-19 ◽  
Author(s):  
Zhu Li ◽  
Jiali Jiang ◽  
Jianxiong Lyu

AbstractAn understanding of wood’s moisture-dependent viscoelastic properties under various temperature conditions is important for assessing its utilization and product quality. In this study, we investigated the influence of moisture content (MC) on the orthotropic viscoelasticity of Chinese fir wood (Cunninghamia lanceolata [Lamb.] Hook.) during quenching ranging from 20 to −120°C. The storage modulus (E′) and loss factor (tan δ) of the longitudinal (L), radial (R) and tangential (T) specimens were determined for nine MC levels ranging from 0.6 to 60.0%. The results showed that E′ generally decreased with increasing amount of bound water in all orthotropic directions, regardless of the temperature. In contrast, a sharp increase in E′ was observed at temperatures below 0°C when free water was present, due to the formation of ice within the cell lumens. The γ-relaxation and β-relaxation were observed in the temperature spectrum. A comparison demonstrates that the β-relaxation showed evident grain orientation. When only bound water was present in the wood cell wall, one clear γ-relaxation was found for all orthotropic directions. In contrast, only the high-temperature side of the γ-relaxation was observed in the three anatomic directions in specimens with free water, which might be related to the amorphous wood cell wall coupling with the frozen free water during the quenching process. In addition, the differences in peak temperatures of the γ-relaxation among the three main directions diminished with increasing bound water.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 580 ◽  
Author(s):  
Shota Hisada ◽  
Mitsuhiro Matsuda ◽  
Minoru Nishida ◽  
Carlo Biffi ◽  
Ausonio Tuissi

Equiatomic CuZr alloy undergoes a martensitic transformation from the B2 parent phase to martensitic phases (P21/m and Cm) below 150 °C. We clarified the effect of the thermal cycling on the morphology and crystallography of martensite in equiatomic CuZr alloy using a transmission electron microscopy. The 10th cycled specimens consisted of different multiple structures at the maximum temperature of differential scanning calorimetry (DSC) measurement −400 °C and 500 °C, respectively. At the maximum temperature 400 °C of DSC measurement, it is composed of the fine plate-like variants, and a lamellar eutectoid structure consisting of Cu10Zr7 and CuZr2 phases on the martensitic variant. Concerning the maximum temperature of 500 °C of DSC measurement, it is observed the martensitic structure and the lamellar structure in which the martensitic phase was completely eutectoid transformed. The formation of this lamellar eutectoid structure, due to thermal cycling leads to the shift of forward and reverse transformation peaks to low and high temperature side. In addition, new forward and reverse transformation peaks indicating a new transformation appeared by thermal cycling, and the peaks remained around −20 °C. This new martensitic transformation behavior is also discussed.


Author(s):  
Shota Hisada ◽  
Mitsuhiro Matsuda ◽  
Minoru Nishida ◽  
Carlo Alberto Biffi ◽  
Ausonio Tuissi

Equiatomic CuZr alloy undergoes a martensitic transformation from the B2 parent phase to martensitic phases (P21/m and Cm) below 150 °C. We clarified the effect of the thermal cycling on the morphology and crystallography of martensite in equiatomic CuZr alloy using a transmission electron microscopy. The 10th cycled specimens consisted of different multiple structures at the maximum temperature of DSC measurement: 400 °C and 500°C, respectively. At the maximum temperature 400 °C of DSC measurement, it is composed of the fine plate-like variants, and a lamellar eutectoid structure consisting of Cu10Zr7 and CuZr2 phases on the martensitic variant. Concerning the maximum temperature 500 °C of DSC measurement, it is observed the martensitic structure and the lamellar structure in which the martensitic phase was completely eutectoid transformed. The formation of this lamellar eutectoid structure due to thermal cycling leads to the shift of forward and reverse transformation peaks to low and high temperature side. In addition, new forward and reverse transformation peaks indicating a new transformation appeared by thermal cycling, and the peaks remained around -20 °C. This new martensitic transformation behavior is also discussed.


Author(s):  
Bo Yang ◽  
Lingen Chen ◽  
Huijun Feng ◽  
Zemin Ding

In the Part 1 of this paper, a variable temperature heat reservoir irreversible intercooling regenerative Brayton combined heat and power (CHP) plant model is set up, and the exergy efficiency and exergy output rate formulae are obtained. The optimization of pressure ratios and the influence analyses of some vital parameters on the exergy performances are carried out. In this Part, the heat conductance distributions about the high temperature-side heat exchanger, regenerator, intercooler, thermal consumer exchanger and low temperature-side heat exchanger, and the pressure ratios are optimized step by step. The effects of main parameters (such as of turbine and compressor efficiencies, working substance pressure drop loss, heat consumer required temperature, and so on) on the optimum exergy performances are investigated, and the heat capacitance rate matching between the heat reservoirs and working substance is studied.


Author(s):  
Tetsuaki Takeda

A depressurization accident is the one of the design-basis accidents of a Very-High-Temperature Reactor (VHTR). When a depressurization accident occurs, air is expected to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, it is important to understand the mixing processes of different kinds of gases in the stable and unstable stratified fluid layers. In particular, it is also important to examine the influence of localized natural convection and molecular diffusion on the mixing process from a safety viewpoint. Therefore, in order to predict or analyze the air ingress phenomena during a depressurization accident, it is important to develop a method for the prevention of air ingress during an accident. We carried out experiments and numerical analysis using three-dimensional (3D) CFD code to obtain the mixing process of two-component gases and the flow characteristics of localized natural convection. This study also investigated a control method for the natural circulation of air through the injection of helium gas. The numerical model consists of a storage tank and a reverse U-shaped vertical rectangular passage. They are separated by a horizontal partition plate. One sidewall of the high-temperature side vertical passage is heated and the other sidewall is cooled. The low-temperature vertical passage is cooled by ambient air. The storage tank is filled with heavy gas and the reverse U-shaped vertical passage is filled with a light gas. In the vertical passage of the high-temperature side, localized natural convection is generated by the temperature difference between the vertical walls. The results obtained from the experiments were quantitatively simulated using 3D numerical analysis. The two component gases were mixed via molecular diffusion and natural convection. After some time elapsed, natural circulation occurred through the reverse U-shaped vertical passage. These flow characteristics are the same as those of phenomena generated in the passage between a permanent reflector and a pressure vessel wall of the VHTR.


2012 ◽  
Vol 535-537 ◽  
pp. 1027-1030
Author(s):  
Xiao Hui Cao ◽  
Yu Wang

By using a low frequency inverted torsion pendulum, the high temperature internal friction spectra of Al-0.02wt%Zr and Al-0.1wt%Zr alloys were investigated respectively. In Al-0.02wt%Zr alloy, the conventional grain boundary internal friction peak (Pg) is observed with some small unstable peaks. In Al-0.1wt%Zr alloy, the bamboo peak is observed to appear at the high temperature side of the conventional grain boundary internal friction peak. The conventional grain boundary internal friction peak decreased and moved to higher temperature. The bamboo peak owns an activation energy of 1.75eV. When average grain size exceeded the diameter of samples, Pb strength was reduced and its position was shifted to a lower temperature. Based on the grain boundary sliding model, Pg and Pb peaks were explained. Their dependence on annealing temperature and time was determined by considering the effects of contained Ce atoms and other impurities on the relaxation across grain boundary.


2009 ◽  
Vol 631-632 ◽  
pp. 489-494
Author(s):  
Takeo Uesugi ◽  
Hitoshi Kohri ◽  
Ichiro Shiota ◽  
Masahiko Kato ◽  
Isao J. Ohsugi

In modern age, much thermal energy is emitted from ceramic and/or steel industries. Their temperature range is between 500 K and 1300 K. Thermoelectric materials are promising to utilize the waste heat, because of no CO2 emission and long life due to no moving parts. The thermoelectric properties of every thermoelectric material have temperature dependence and high performance appears at a specific temperature range. If the proper materials are placed and joined along the temperature gradient to form an FGM, the performance should be higher than a monolithic material. The performance of a thermoelectric material is expressed by the dimensionless figure of merit ZT=α2ρ-1κ -1T, where α is the Seebeck coefficient, ρ is the electrical resistivity, κ is the thermal conductivity, and T is absolute temperature. Thermoelectric oxides are suitable for high temperature materials because of chemical stability. NaxCoO2 shows relatively high ZT value in thermoelectric oxide at the temperature range below 800 K. Ca3Co4O9 shows ZT ~1 at 1000 K. Recently, it is reported that Ca3Co2O6 that is formed by decomposition of Ca3Co4O9 at 1173 K has high performance at 1300 K. The properties and fabrication condition of high density Ca3Co2O6 are, however, not reported in detail. In order to improve the thermoelectric properties and to shift the temperature range for Ca3Co2O6, we investigated the effects of element substitution. In this experiment, the sintered Ca3Co2-xMxO6 (x=0 or 0.2, M= Mn, Mo or V) were prepared by solid-state reaction or hot pressing. Relative density of Ca3Co2O6 by hot-pressing (HP) was over 94% which is larger than one of Ca3Co2O6 by solid-state reaction (SSR). The resistivity of Mo- or V-substituted Ca3Co2O6 (HP-Mo or HP-V) were lower than one of non-substituted Ca3Co2O6 (HP). The resistivity of Mo-substituted Ca3Co2O6 (HP-Mo) showed the lowest value of 4.3×10-2 Ωcm in all specimens at 1181 K. The power factor α2ρ-1 of Ca3Co2O6 (HP-Mo) was 64.2 Wm-1K-2, which is the largest of all specimens at 1178 K, and this value is approximately 1.3 times higher than 48.8 Wm-1K-2 for Ca3Co2O6 (HP).


Sign in / Sign up

Export Citation Format

Share Document