scholarly journals 413 Fatigue crack propagation from a hole in tubular specimens under combined axial and torsional loading

2005 ◽  
Vol 2005.54 (0) ◽  
pp. 107-108
Author(s):  
Hiroki TAKAHASHI ◽  
Keisuke TANAKA ◽  
Yoshiaki AKINIWA ◽  
Teruaki MIKURIYA
2006 ◽  
Vol 321-323 ◽  
pp. 720-723
Author(s):  
Yong Hak Huh ◽  
Philip Park ◽  
Dong Jin Kim ◽  
Jun Hyub Park

Fatigue crack propagation behavior under cyclic tensile or torsional loading with biaxial static loads has been investigated. Two different biaxial loading systems, i.e. cyclic tensile loading with static torsional load and cyclic torsional loading with static tensile load, were employed to thin-walled tubular specimens. The crack propagation was measured by two crack gages mounted near the notch and crack opening level was measured by unloading compliance method. The directions of the fatigue crack propagated under respective biaxial loading conditions were examined and the growth rates were evaluated by using several cyclic parameters, including equivalent stress intensity factor range, Keff, crack tip opening displacement range, CTD, minimum strain energy density factor range, Smin. Furthermore, the growth rates were evaluated by effective cyclic parameters considering crack closure. It was found that the biaxial static stress superimposed on the cyclic tensile or torsional loading tests has no influence on the propagation directions of the cracks. Furthermore, it was shown that the fatigue crack growth rates under biaixial faigue loading were well expressed by using the cyclic fatigue parameters, Keq,eff, CTDeff, Smin,eff considering crack closure effect.


Author(s):  
Motoki Nakane ◽  
Satoshi Kanno ◽  
Shota Hashimoto ◽  
Takayuki Watanabe ◽  
Yukio Takahashi

This study discusses methods for evaluating fatigue crack propagation under torsional loading for pipes. To achieve this objective, fatigue crack propagation tests were carried out on both stainless steel and carbon steel used in piping systems of nuclear power plants. Two different kinds of pipes were tested in this study. These pipes had the same shape but the diameter and thickness of the larger pipe were twice those of the smaller pipe. The nominal shear stress amplitudes applied to the specimen were set between 50 and 100 MPa depending on the dimension of the specimen and desired crack growth rates. All fatigue tests were conducted under pure torsional loading with stress ratio R = −1 and at room temperature. The geometrical correction factors for the specimen were derived from elastic J-integral calculated by the FEM. The fatigue crack propagation tests results show that the crack growth rates estimated by the elastic stress intensity factor with the geometrical correction factor were much faster than curves prescribed in The Japan Society of Mechanical Engineers (JSME) codes. These results suggest that elastic plastic fracture parameters should be considered into the stress intensity factor because yield stresses for torsional loading would be smaller than those of uniaxial loading. The plastic zone correction method and modified reference stress method were examined as alternative methods. The crack growth rates estimated by the proposed methods almost totally correspond to the JSME curves. The two proposed methods were found to be quite effective at correctly evaluating the crack growth rates under torsional loading.


Author(s):  
Ali Hassanirad ◽  
Vahid Vaziri ◽  
Marian Wiercigroch ◽  
Ko-Choong Woo

Sign in / Sign up

Export Citation Format

Share Document