Effect of Biaxial Static Loads on Fatigue Crack Propagation Behavior under Cyclic Tensile and Torsional Loading

2006 ◽  
Vol 321-323 ◽  
pp. 720-723
Author(s):  
Yong Hak Huh ◽  
Philip Park ◽  
Dong Jin Kim ◽  
Jun Hyub Park

Fatigue crack propagation behavior under cyclic tensile or torsional loading with biaxial static loads has been investigated. Two different biaxial loading systems, i.e. cyclic tensile loading with static torsional load and cyclic torsional loading with static tensile load, were employed to thin-walled tubular specimens. The crack propagation was measured by two crack gages mounted near the notch and crack opening level was measured by unloading compliance method. The directions of the fatigue crack propagated under respective biaxial loading conditions were examined and the growth rates were evaluated by using several cyclic parameters, including equivalent stress intensity factor range, Keff, crack tip opening displacement range, CTD, minimum strain energy density factor range, Smin. Furthermore, the growth rates were evaluated by effective cyclic parameters considering crack closure. It was found that the biaxial static stress superimposed on the cyclic tensile or torsional loading tests has no influence on the propagation directions of the cracks. Furthermore, it was shown that the fatigue crack growth rates under biaixial faigue loading were well expressed by using the cyclic fatigue parameters, Keq,eff, CTDeff, Smin,eff considering crack closure effect.

1974 ◽  
Vol 96 (4) ◽  
pp. 249-254 ◽  
Author(s):  
L. A. James

Linear-elastic fracture mechanics techniques were used to characterize the fatigue-crack propagation behavior of Incoloy 800 in an air environment over the temperature range 75 to 1200 deg F (24 to 649 deg F). Crack growth rates were measured over the range 5×10−7 to 5×10−5 in./cycle. Material Grades 1 and 2 were found to exhibit essentially the same behavior over this range. In general, crack growth rates increased with increasing test temperature, although the increases were less then previously noted for austenitic stainless steels. This difference is probably related to the superior oxidation resistance of Incoloy 800.


Sign in / Sign up

Export Citation Format

Share Document